9 research outputs found
Semi-Automatic segmentation of multiple mouse embryos in MR images
<p>Abstract</p> <p>Background</p> <p>The motivation behind this paper is to aid the automatic phenotyping of mouse embryos, wherein multiple embryos embedded within a single tube were scanned using Magnetic Resonance Imaging (MRI).</p> <p>Results</p> <p>Our algorithm, a modified version of the simplex deformable model of Delingette, addresses various issues with deformable models including initialization and inability to adapt to boundary concavities. In addition, it proposes a novel technique for automatic collision detection of multiple objects which are being segmented simultaneously, hence avoiding major leaks into adjacent neighbouring structures. We address the initialization problem by introducing balloon forces which expand the initial spherical models close to the true boundaries of the embryos. This results in models which are less sensitive to initial minimum of two fold after each stage of deformation. To determine collision during segmentation, our unique collision detection algorithm finds the intersection between binary masks created from the deformed models after every few iterations of the deformation and modifies the segmentation parameters accordingly hence avoiding collision.</p> <p>We have segmented six tubes of three dimensional MR images of multiple mouse embryos using our modified deformable model algorithm. We have then validated the results of the our semi-automatic segmentation versus manual segmentation of the same embryos. Our Validation shows that except paws and tails we have been able to segment the mouse embryos with minor error.</p> <p>Conclusions</p> <p>This paper describes our novel multiple object segmentation technique with collision detection using a modified deformable model algorithm. Further, it presents the results of segmenting magnetic resonance images of up to 32 mouse embryos stacked in one gel filled test tube and creating 32 individual masks.</p
Multisite Comparison of MRI Defacing Software Across Multiple Cohorts
With improvements to both scan quality and facial recognition software, there is an increased risk of participants being identified by a 3D render of their structural neuroimaging scans, even when all other personal information has been removed. To prevent this, facial features should be removed before data are shared or openly released, but while there are several publicly available software algorithms to do this, there has been no comprehensive review of their accuracy within the general population. To address this, we tested multiple algorithms on 300 scans from three neuroscience research projects, funded in part by the Ontario Brain Institute, to cover a wide range of ages (3â85 years) and multiple patient cohorts. While skull stripping is more thorough at removing identifiable features, we focused mainly on defacing software, as skull stripping also removes potentially useful information, which may be required for future analyses. We tested six publicly available algorithms (afni_refacer, deepdefacer, mri_deface, mridefacer, pydeface, quickshear), with one skull stripper (FreeSurfer) included for comparison. Accuracy was measured through a pass/fail system with two criteria; one, that all facial features had been removed and two, that no brain tissue was removed in the process. A subset of defaced scans were also run through several preprocessing pipelines to ensure that none of the algorithms would alter the resulting outputs. We found that the success rates varied strongly between defacers, with afni_refacer (89%) and pydeface (83%) having the highest rates, overall. In both cases, the primary source of failure came from a single dataset that the defacer appeared to struggle with - the youngest cohort (3â20 years) for afni_refacer and the oldest (44â85 years) for pydeface, demonstrating that defacer performance not only depends on the data provided, but that this effect varies between algorithms. While there were some very minor differences between the preprocessing results for defaced and original scans, none of these were significant and were within the range of variation between using different NIfTI converters, or using raw DICOM files
nnResting state fMRI scanner instabilities revealed by longitud inal phantom scans in a multi-center study
Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network\u27s (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies
Group-wise 3D MR Image Registration of Mouse Embryos
This dissertation provides the foundations of computer-based automated phenotyping methods for analyzing 3D images of mouse embryos. A group-wise registration technique was utilized and optimized and computerized methods were employed for analysis of 3D MRI images of mouse embryos.
The assumption that embryo anatomy is highly conserved among genetically identical specimens was verified. The group-wise registration approach was used to align a group of embryos from the 129S1/SvImJ (129Sv) strain as well as a group of C57BL/6J (C57) embryos.
Finally, we shed some light on some of the morphological differences between the 129Sv and C57 strains using automated techniques.MAS
Semi-Automatic segmentation of multiple mouse embryos in MR images
Abstract
Background
The motivation behind this paper is to aid the automatic phenotyping of mouse embryos, wherein multiple embryos embedded within a single tube were scanned using Magnetic Resonance Imaging (MRI).
Results
Our algorithm, a modified version of the simplex deformable model of Delingette, addresses various issues with deformable models including initialization and inability to adapt to boundary concavities. In addition, it proposes a novel technique for automatic collision detection of multiple objects which are being segmented simultaneously, hence avoiding major leaks into adjacent neighbouring structures. We address the initialization problem by introducing balloon forces which expand the initial spherical models close to the true boundaries of the embryos. This results in models which are less sensitive to initial minimum of two fold after each stage of deformation. To determine collision during segmentation, our unique collision detection algorithm finds the intersection between binary masks created from the deformed models after every few iterations of the deformation and modifies the segmentation parameters accordingly hence avoiding collision.
We have segmented six tubes of three dimensional MR images of multiple mouse embryos using our modified deformable model algorithm. We have then validated the results of the our semi-automatic segmentation versus manual segmentation of the same embryos. Our Validation shows that except paws and tails we have been able to segment the mouse embryos with minor error.
Conclusions
This paper describes our novel multiple object segmentation technique with collision detection using a modified deformable model algorithm. Further, it presents the results of segmenting magnetic resonance images of up to 32 mouse embryos stacked in one gel filled test tube and creating 32 individual masks
Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data
Recommended from our members
Soluble Epoxide Hydrolase Derived Linoleic Acid Oxylipins, Small Vessel Disease Markers, and Neurodegeneration in Stroke
Background Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke. Methods and Results Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography-mass spectrometry. Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke (n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (β=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was associated with more lacunes (β=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (β=0.364, P<0.001; β=0.362, P<0.001) and white matter MRI-visible perivascular spaces (β=0.302, P=0.011; β=0.314, P=0.006). In small vessel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (β=0.439, P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was associated with temporal lobe atrophy (β=-0.277, P=0.031). Conclusions Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disruption, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related neurodegeneration