541 research outputs found

    Jamming Criticality Revealed by Removing Localized Buckling Excitations

    Full text link
    Recent theoretical advances offer an exact, first-principle theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small inter-particle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the inter-particle gaps is known to be constant in all spatial dimensions dd -- including the physically relevant d=2d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.Comment: 12 pages, 4 figure

    Low-frequency vibrational spectrum of mean-field disordered systems

    Get PDF
    We study a recently introduced and exactly solvable mean-field model for the density of vibrational states D(ω) of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with random stiffness κ drawn from a distribution p(κ), subjected to a constant field h and interacting bilinearly with a coupling of strength J. We investigate the vibrational properties of its ground state at zero temperature. When p(κ) is gapped, the emergent D(ω) is also gapped, for small J. Upon increasing J, the gap vanishes on a critical line in the (h, J) phase diagram, whereupon replica symmetry is broken. At small h, the form of this pseudogap is quadratic, D(ω) ~ ω2, and its modes are delocalized, as expected from previously investigated mean-field spin glass models. However, we determine that for large enough h, a quartic pseudogap D(ω) ~ ω4, populated by localized modes, emerges, the two regimes being separated by a special point on the critical line. We thus uncover that mean-field disordered systems can generically display both a quadratic-delocalized and a quartic-localized spectrum at the glass transition.</p

    Cysteine String Protein Regulates G Protein Modulation of N-Type Calcium Channels

    Get PDF
    AbstractCysteine string proteins (CSPs) are secretory vesicle proteins bearing a “J domain” and a palmitoylated cysteine-rich “string” region that are critical for neurotransmitter release. The precise role of CSP in neurotransmission is controversial. Here, we demonstrate a novel interaction between CSP, receptor-coupled trimeric GTP binding proteins (G proteins), and N-type Ca2+ channels. Gα subunits interact with the J domain of CSP in an ATP-dependent manner; in contrast, Gβγ subunits interact with the C terminus of CSP in both the presence and absence of ATP. The interaction of CSP with both G proteins and N-type Ca2+ channels results in a tonic G protein inhibition of the channels. In view of the crucial importance of N-type Ca2+ channels in presynaptic vesicle release, our data attribute a key role to CSP in the fine tuning of neurotransmission

    Fluctuation relations in non-equilibrium stationary states of Ising models

    Full text link
    Fluctuation relations for the entropy production in non equilibrium stationary states of Ising models are investigated by Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, by considering different kinetic rules and couplings with the baths, the behavior of the probability distributions of the heat exchanged in a time τ\tau with the thermostats, both in the disordered and in the low temperature phase, are discussed. The fluctuation relation is always verified in the large τ\tau limit and deviations from linear response theory are observed. Finite-τ\tau corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath but work is done by shearing it. Also for this system the statistics collected for the mechanical work shows the validity of the fluctuation relation and preasymptotic corrections behave analogously to the case with two baths.Comment: 9 figure

    Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition

    Get PDF
    Direct interaction with the β subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel α1 subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type Gβ1γ2 subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI) was assessed using patch clamp recordings. The resulting data indicate that Arg376 and Val416 of the α1 subunit, residues which are surface-exposed in the presence of the calcium channel β subunit, contribute significantly to the functional inhibition by Gβ1. To further characterize the roles of Arg376 and Val416 in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type Gβ1γ2 subunits and with several isoforms of the auxiliary β subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg376 for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel

    Chaotic Hypothesis, Fluctuation Theorem and singularities

    Full text link
    The chaotic hypothesis has several implications which have generated interest in the literature because of their generality and because a few exact predictions are among them. However its application to Physics problems requires attention and can lead to apparent inconsistencies. In particular there are several cases that have been considered in the literature in which singularities are built in the models: for instance when among the forces there are Lennard-Jones potentials (which are infinite in the origin) and the constraints imposed on the system do not forbid arbitrarily close approach to the singularity even though the average kinetic energy is bounded. The situation is well understood in certain special cases in which the system is subject to Gaussian noise; here the treatment of rather general singular systems is considered and the predictions of the chaotic hypothesis for such situations are derived. The main conclusion is that the chaotic hypothesis is perfectly adequate to describe the singular physical systems we consider, i.e. deterministic systems with thermostat forces acting according to Gauss' principle for the constraint of constant total kinetic energy (``isokinetic Gaussian thermostats''), close and far from equilibrium. Near equilibrium it even predicts a fluctuation relation which, in deterministic cases with more general thermostat forces (i.e. not necessarily of Gaussian isokinetic nature), extends recent relations obtained in situations in which the thermostatting forces satisfy Gauss' principle. This relation agrees, where expected, with the fluctuation theorem for perfectly chaotic systems. The results are compared with some recent works in the literature.Comment: 7 pages, 1 figure; updated to take into account comments received on the first versio

    Tuning the Correlation Decay in the Resistance Fluctuations of Multi-Species Networks

    Full text link
    A new network model is proposed to describe the 1/fα1/f^\alpha resistance noise in disordered materials for a wide range of α\alpha values (0<α<20< \alpha < 2). More precisely, we have considered the resistance fluctuations of a thin resistor with granular structure in different stationary states: from nearly equilibrium up to far from equilibrium conditions. This system has been modelled as a network made by different species of resistors, distinguished by their resistances, temperature coefficients and by the energies associated with thermally activated processes of breaking and recovery. The correlation behavior of the resistance fluctuations is analyzed as a function of the temperature and applied current, in both the frequency and time domains. For the noise frequency exponent, the model provides 0<α<10< \alpha < 1 at low currents, in the Ohmic regime, with α\alpha decreasing inversely with the temperature, and 1<α<21< \alpha <2 at high currents, in the non-Ohmic regime. Since the threshold current associated with the onset of nonlinearity also depends on the temperature, the proposed model qualitatively accounts for the complicate behavior of α\alpha versus temperature and current observed in many experiments. Correspondingly, in the time domain, the auto-correlation function of the resistance fluctuations displays a variety of behaviors which are tuned by the external conditions.Comment: 26 pages, 16 figures, Submitted to JSTAT - Special issue SigmaPhi200

    Efficacy and safety of levetiracetam in infants and young children with refractory epilepsy

    Get PDF
    SummaryThe aim of this multicentric, retrospective, and uncontrolled study was to evaluate the efficacy and safety of levetiracetam (LEV) in 81 children younger than 4 years with refractory epilepsy. At an average follow-up period of 9 months, LEV administration was found to be effective in 30% of patients (responders showing more than a 50% decrease in seizure frequency) of whom 10 (12%) became seizure free. This efficacy was observed for focal (46%) as well as for generalized seizures (42%). In addition, in a group of 48 patients, we compared the initial efficacy (evaluated at an average of 3 months of follow-up) and the retention at a mean of 12 months of LEV, with regard to loss of efficacy (defined as the return to the baseline seizure frequency). Twenty-two patients (46%) were initial responders. After a minimum of 12 months of follow-up, 9 of 48 patients (19%) maintained the improvement, 4 (8%) of whom remained seizure free. A loss of efficacy was observed in 13 of the initial responders (59%). Maintained LEV efficacy was noted in patients with focal epilepsy and West syndrome. LEV was well tolerated. Adverse events were seen in 18 (34%) patients. The main side effects were drowsiness and nervousness. Adverse events were either tolerable or resolved in time with dosage reduction or discontinuation of the drug.We conclude that LEV is safe and effective for a wide range of epileptic seizures and epilepsy syndromes and, therefore, represents a valid therapeutic option in infants and young children affected by epilepsy

    Hexavalent chromium release over time from a pyrolyzed Cr-bearing tannery sludge

    Get PDF
    Pyrolysis in an inert atmosphere is a widely applied route to convert tannery wastes into reusable materials. In the present study, the Cr(III) conversion into the toxic hexavalent form in the pyrolyzed tannery waste referred to as KEU was investigated. Ageing experiments and leaching tests demonstrated that the Cr(III)–Cr(VI) inter-conversion occurs in the presence of air at ambient temperature, enhanced by wet environmental conditions. Microstructural analysis revealed that the Cr-primary mineral assemblage formed during pyrolysis (Cr-bearing srebrodolskite and Cr-magnetite spinel) destabilized upon spray water cooling in the last stage of the process. In the evolution from the higher to the lower temperature mineralogy, Cr is incorporated into newly formed CrOOH flakes which likely react in air forming extractable Cr(VI) species. This property transforms KEU from an inert waste to a hazardous material when exposed to ordinary ambient conditions
    corecore