308 research outputs found

    Non-toxic near-infrared (NIR) LEDs

    Get PDF
    Summary: Harnessing cost-efficient printable semiconductor materials as near-infrared (NIR) emitters in light-emitting diodes (LEDs) is extremely attractive for sensing and diagnostics, telecommunications, and the biomedical sciences. However, the most efficient NIR LEDs suitable for printable electronics rely on emissive materials containing precious transition metal ions (such as platinum), which have triggered concerns about their poor biocompatibility and sustainability. Here, we review and highlight the latest progress in NIR LEDs based on non-toxic and low-cost functional materials suitable for solution-processing deposition. Different approaches to achieve NIR emission from organic and hybrid materials are discussed, with particular focus on fluorescent and exciplex-forming host-guest systems, thermally-activated delayed fluorescent molecules, aggregation-induced emission fluorophores, as well as lead-free perovskites. Alternative strategies leveraging photonic microcavity effects and surface plasmon resonances to enhance the emission of such materials in the NIR are also presented. Finally, an outlook for critical challenges and opportunities of non-toxic NIR LEDs is provided

    Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support

    Get PDF
    Outgassing or thruster’s generated contaminants are critical for optical surfaces and optical payloads because scientific measurements and, in general, the performances can be degraded or jeopardized by uncontrolled contamination. This is a well-known issue in space technology that is demonstrated by the growing usage of quartz crystal microbalances as a solution for measuring material outgassing properties data and characterizing the on-orbit contamination environment. Operation in space requires compatibility with critical requirements, especially the mechanical and thermal environments to be faced throughout the mission. This work provides the design of a holding structure based on 3D printing technology conceived to meet the environmental characteristics of space application, and in particular, to face harsh mechanical and thermal environments. A kinematic mounting has been conceived to grant compatibility with a large temperature range, and it has been designed by finite element methods to overcome loading during the launch phases and cope with a temperature working range down to cryogenic temperatures. Qualification in such environments has been performed on a mockup by testing a prototype of the holding assembly between −110 °C and 110 °C and allowing verification of the mechanical resistance and stability of the electrical contacts for the embedded heater and sensor in that temperature range. Moreover, mechanical testing in a random environment characterized by an RMS acceleration level of 500 m/s2 and excitation frequency from 20 to 2000 Hz was successfully performed. The testing activity allowed for validation of the proposed design and opened the road to the possible implementation of the proposed design for future flight opportunities, also onboard micro or nanosatellites. Moreover, exploiting the manufacturing technology, the proposed design can implement an easy assembling and mounting of the holding system. At the same time, 3D printing provides a cost-effective solution even for small series production for ground applications, like monitoring the contaminants in thermo-vacuum chambers or clean rooms, or depositions chambers

    airbrush spray coating of amorphous titanium dioxide for inverted polymer solar cells

    Get PDF
    One of the main topics of organic photovoltaics manufacturing is the need for simple, low cost, and large area compatible techniques. Solution-based processes are the best candidates to achieve this aim. Among these, airbrush spray coating has successfully applied to deposit both active and PEDOT layers of bulk-heterojunction solar cells. However, this technique is not yet sufficiently studied for interfacial layers (electron and hole transporting layers or optical spacers). In this paper, we show that amorphous titanium dioxide ( ) films, obtained with an airbrush from a solution of titanium (IV) isopropoxide diluted in isopropanol, are successfully deposited on glass and PET substrates. Good surface covering results from the coalescence of droplets after optimizing the spray coating system. Simple inverted polymer solar cells are fabricated using as electron transporting layer obtaining encouraging electrical performances ( % on glass/FTO and 0.7% on PET/ITO substrates)

    Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes

    Get PDF
    Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used

    Conceptualization of satellite, UAS and UGV downscaling approach for abandoned waste detection and waste to energy prospects

    Get PDF
    The aim of this research is to develop a multiparametric downscaling analysis for the detection of abandoned waste in the environment. This methodology, using a multi-technological approach, involves the adoption VHR satellite images, Unmanned Aircraft System (UAS) and Unmanned Ground Vehicles (UGV). The identified Warning Areas (WA) will be investigated through an in-situ analysis with air quality measurement devices based on advanced sensors mounted on drones. The creation of a Cadastre Accumulation of Abandoned Materials (CAMA) and the related APP will allow the administrations to monitor the phenomenon. Finally, the waste product analysis, retrieved by means of UAS dataset computation, allows to retrieve some interesting prospects regarding Waste to Energy framework. Here, preliminary results obtained by the on-going INTESA Project are presented

    CONCEPTUALIZATION OF A SATELLITE, UAS AND UGV DOWNSCALING APPROACH FOR ABANDONED WASTE DETECTION AND WASTE TO ENERGY PROSPECTS

    Get PDF
    The aim of this research is to develop a multiparametric downscaling analysis for the detection of abandoned waste in the environment. This methodology, using a multi-technological approach, involves the adoption VHR satellite images, Unmanned Aircraft System (UAS) and Unmanned Ground Vehicles (UGV). The identified Warning Areas (WA) will be investigated through an in-situ analysis with air quality measurement devices based on advanced sensors mounted on drones. The creation of a Cadastre Accumulation of Abandoned Materials (CAMA) and the related APP will allow the administrations to monitor the phenomenon. Finally, the waste product analysis, retrieved by means of UAS dataset computation, allows to retrieve some interesting prospects regarding Waste to Energy framework. Here, preliminary results obtained by the on-going INTESA Project are presented

    A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    Get PDF
    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field.Peer reviewe

    A ternary PEDOT-TiO2-reduced graphene oxide nanocomposite for supercapacitor applications

    Get PDF
    A ternary composite of PEDOT was prepared with TiO2 via emulsion polymerization method adjusting various weight ratios of TiO2 to PEDOT and synthesized rGO was then blended with this composite. The FTIR, UV–Vis and XRD analysis displayed characteristic features of PEDOT and TiO2. The morphology of the nano-hybrid structure was additionally investigated by SEM analysis. Pore size and surface area analysis of particles were characterized by BET method. The electrochemical analysis showed that the specific capacitance (Csp) for PEDOT-TiO2-15-rGO was 18.9 F.cm-2 at 0.1 mA g-1 current density
    • …
    corecore