5,822 research outputs found

    Two-Loop Crossover Scaling Functions of the O(N) Model

    Get PDF
    Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the O(N)O(N) model in the whole critical region. The solution of the beta-function equation, for the running coupling to order two loops, exhibits crossover between the strong coupling fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point. The Wilson functions γλ\gamma_\lambda, γϕ\gamma_\phi and γϕ2\gamma_{\phi^2}, and thus the effective critical exponents associated with renormalization of the transverse vertex functions, also exhibit non-trivial crossover between these fixed points.Comment: 21 pages, 4 figures, version to appears in IJMPL

    A first order Tsallis theory

    Full text link
    We investigate first-order approximations to both i) Tsallis' entropy SqS_q and ii) the SqS_q-MaxEnt solution (called q-exponential functions eqe_q). It is shown that the functions arising from the procedure ii) are the MaxEnt solutions to the entropy emerging from i). The present treatment is free of the poles that, for classic quadratic Hamiltonians, appear in Tsallis' approach, as demonstrated in [Europhysics Letters {\bf 104}, (2013), 60003]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.Comment: 4 figures adde

    Characterization of digital dispersive spectrometers by low coherence interferometry

    Get PDF
    We propose a procedure to determine the spectral response of digital dispersive spectrometers without previous knowledge of any parameter of the system. The method consists of applying the Fourier transform spectroscopy technique to each pixel of the detection plane, a CCD camera, to obtain its individual spectral response. From this simple procedure, the system-point spread function and the effect of the finite pixel width are taken into account giving rise to a response matrix that fully characterizes the spectrometer. Using the response matrix information we find the resolving power of a given spectrometer, predict in advance its response to any virtual input spectrum and improve numerically the spectrometer's resolution. We consider that the presented approach could be useful in most spectroscopic branches such as in computational spectroscopy, optical coherence tomography, hyperspectral imaging, spectral interferometry and analytical chemistry, among others.Fil: Martínez Matos, Ó.. Universidad Complutense de Madrid; EspañaFil: Rickenstorff, C.. Universidad Complutense de Madrid; EspañaFil: Zamora, S.. Universidad Complutense de Madrid; EspañaFil: Izquierdo, J. G.. Universidad Complutense de Madrid; EspañaFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentin

    On the critical end point in a two-flavor linear sigma model coupled to quarks

    Full text link
    We use the linear sigma model coupled to quarks to explore the location of the phase transition lines in the QCD phase diagram from the point of view of chiral symmetry restoration at high temperature and baryon chemical potential. We compute analytically the effective potential in the high- and low-temperature approximations up to sixth order, including the contribution of the ring diagrams to account for the plasma screening properties. We determine the model parameters, namely, the couplings and mass-parameter, from conditions valid at the first order phase transition at vanishing temperature and, using the Hagedorn limiting temperature concept applied to finite baryon density, for a critical baryochemical potential of order of the nucleon mass. We show that when using the set of parameters thus determined, the second order phase transition line (our proxy for the crossover transition) that starts at finite temperature and zero baryon chemical potential converges to the line of first order phase transitions that starts at zero temperature and finite baryon chemical potential to determine the critical end point to lie in the region 5.02<\mu_B^{\mbox{CEP}}/T_c<5.18, 0.14, where TcT_c is the critical transition temperature at zero baryon chemical potential.Comment: 11 pages, 3 figures, discussion extended, explicit calculations included in appendices and version accepted for publication in EPJ
    corecore