8 research outputs found

    Social network analysis of cell networks improves deep learning for prediction of molecular pathways and key mutations in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a primary global health concern, and identifying the molecular pathways, genetic subtypes, and mutations associated with CRC is crucial for precision medicine. However, traditional measurement techniques such as gene sequencing are costly and time-consuming, while most deep learning methods proposed for this task lack interpretability. This study offers a new approach to enhance the state-of-the-art deep learning methods for molecular pathways and key mutation prediction by incorporating cell network information. We build cell graphs with nuclei as nodes and nuclei connections as edges of the network and leverage Social Network Analysis (SNA) measures to extract abstract, perceivable, and interpretable features that explicitly describe the cell network characteristics in an image. Our approach does not rely on precise nuclei segmentation or feature extraction, is computationally efficient, and is easily scalable. In this study, we utilize the TCGA-CRC-DX dataset, comprising 499 patients and 502 diagnostic slides from primary colorectal tumours, sourced from 36 distinct medical centres in the United States. By incorporating the SNA features alongside deep features in two multiple instance learning frameworks, we demonstrate improved performance for chromosomal instability (CIN), hypermutated tumour (HM), TP53 gene, BRAF gene, and Microsatellite instability (MSI) status prediction tasks (2.4%–4% and 7–8.8% improvement in AUROC and AUPRC on average). Additionally, our method achieves outstanding performance on MSI prediction in an external PAIP dataset (99% AUROC and 98% AUPRC), demonstrating its generalizability. Our findings highlight the discrimination power of SNA features and how they can be beneficial to deep learning models’ performance and provide insights into the correlation of cell network profiles with molecular pathways and key mutations

    Mitosis Detection, Fast and Slow: Robust and Efficient Detection of Mitotic Figures

    Full text link
    Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to {\em domain shift} often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation ({\em Detecting Fast}) and candidate refinement ({\em Detecting Slow}) stages. The proposed candidate segmentation model, termed \textit{EUNet}, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,125 whole-slide images) to generate and release a repository of more than 620K mitotic figures.Comment: Extended version of the work done for MIDOG challenge submissio

    Domain Generalization in Computational Pathology: Survey and Guidelines

    Full text link
    Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.Comment: Extended Versio

    Mitosis detection, fast and slow : robust and efficient detection of mitotic figures

    Get PDF
    Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively validated). [Abstract copyright: Copyright © 2024. Published by Elsevier B.V.

    Cells are actors : social network analysis with classical ML for SOTA histology image classification

    No full text
    Digitization of histology images and the advent of new computational methods, like deep learning, have helped the automatic grading of colorectal adenocarcinoma cancer (CRA). Present automated CRA grading methods, however, usually use tiny image patches and thus fail to integrate the entire tissue micro-architecture for grading purposes. To tackle these challenges, we propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment by modelling nuclei and their connections as a network. We show that by analyzing only the interactions between the cells in a network, we can extract highly discriminative statistical features for CRA grading. Unlike other deep learning or convolutional graph-based approaches, our method is highly scalable (can be used for cell networks consist of millions of nodes), completely explainable, and computationally inexpensive. We create cell networks on a broad CRC histology image dataset, experiment with our method, and report state-of-the-art performance for the prediction of three-class CRA grading

    Cells are actors : social network analysis with classical ML for SOTA histology image classification

    No full text
    Digitization of histology images and the advent of new computational methods, like deep learning, have helped the automatic grading of colorectal adenocarcinoma cancer (CRA). Present automated CRA grading methods, however, usually use tiny image patches and thus fail to integrate the entire tissue micro-architecture for grading purposes. To tackle these challenges, we propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment by modelling nuclei and their connections as a network. We show that by analyzing only the interactions between the cells in a network, we can extract highly discriminative statistical features for CRA grading. Unlike other deep learning or convolutional graph-based approaches, our method is highly scalable (can be used for cell networks consist of millions of nodes), completely explainable, and computationally inexpensive. We create cell networks on a broad CRC histology image dataset, experiment with our method, and report state-of-the-art performance for the prediction of three-class CRA grading

    Stain-robust mitotic figure detection for the mitosis domain generalization challenge

    No full text
    The detection of mitotic figures from different scanners/sites remains an important topic of research, owing to its potential in assisting clinicians with tumour grading. The MItosis DOmain Generalization (MIDOG) challenge aims to test the robustness of detection models on unseen data from multiple scanners for this task. We present a short summary of the approach employed by the TIA Centre team to address this challenge. Our approach is based on a hybrid detection model, where mitotic candidates are segmented on stain normalised images, before being refined by a deep learning classifier. Cross-validation on the training images achieved the F1-score of 0.786 and 0.765 on the preliminary test set, demonstrating the generalizability of our model to unseen data from new scanners

    Stain-robust mitotic figure detection for the mitosis domain generalization challenge

    No full text
    The detection of mitotic figures from different scanners/sites remains an important topic of research, owing to its potential in assisting clinicians with tumour grading. The MItosis DOmain Generalization (MIDOG) challenge aims to test the robustness of detection models on unseen data from multiple scanners for this task. We present a short summary of the approach employed by the TIA Centre team to address this challenge. Our approach is based on a hybrid detection model, where mitotic candidates are segmented on stain normalised images, before being refined by a deep learning classifier. Cross-validation on the training images achieved the F1-score of 0.786 and 0.765 on the preliminary test set, demonstrating the generalizability of our model to unseen data from new scanners
    corecore