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ARTICLE INFO ABSTRACT

Keywords: Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However,
Mitosis manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic
Detection ) figures causes a high degree of discordance among pathologists. With advances in deep learning models, several
Segmentation automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in
Breast cancer . . —_ s . . .
MIDOG histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises
TUPAC mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed

candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can
precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are
then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages
are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-
the-art performance and generalizability of the proposed model on the three largest publicly available mitosis
datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally,
we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-
slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively
validated).

Computational pathology
Deep learning

1. Introduction et al., 2017), with Deep Learning (DL) methods providing promis-

ing avenues for automated mitotic figure detection/counting (Mathew

Mitosis, a key cell-life cycle process, involves chromosome repli-
cation and separation into two nuclei, resulting in two identical cells
(Cheeseman and Desai, 2008). Detection and counting of mitotic fig-
ures, particularly relevant for tumor analysis in various cancers (Cree
et al., 2021), have demonstrated a strong correlation with cell prolifer-
ation, serving as a key parameter in tumor grading systems (Paul and
Mukherjee, 2015; Rakha et al., 2008). However, the diversity in mitotic
figure appearances and resemblance of imposters/mimicker cells often
lead to significant inter-rater variability (see Fig. 1 for examples of
mitoses and mimickers).

The rise of digital pathology (DP), driven by whole-slide scanners,
has fostered the growth of Computational Pathology (CPath), which fa-
cilitates analysis of multi-gigapixel Whole-Slide Images (WSIs) (Graham
et al.,, 2019; Shephard et al., 2021; Alemi Koohbanani et al., 2018,
2019). Generally, CPath enhances objectivity and reproducibility in
histopathology tasks (Cruz-Roa et al., 2017; Bizzego et al., 2019; Djuric

et al., 2021; Aubreville et al., 2022b). Nonetheless, applying machine
learning to clinical practice poses challenges. Models must be robust
to WSI appearance variations, stemming from differences in sample
preparation, tissue types, and scanner hardware (Asif et al., 2021;
Aubreville et al., 2022b). This variability introduces domain shift in
WSIs from different scanners and sites (see Fig. 1.a for an example of
variation caused by two different scanners on the same sample).

The MItosis DOmain Generalization challenge (MIDOG21) (Aubre-
ville et al., 2022b) offered a testing ground for mitotic figure detection
algorithms amidst domain shift, specifically in human breast cancer.
Yet, domain shift also emerges from tissue type and species differences,
affecting mitotic figure appearance (Bertram et al., 2019). Thus, robust
tools for different cancer types, species, scanners, or preparation proto-
cols are desirable. MIDOG22 (Aubreville et al., 2022a) expanded on this
by considering domain shifts from different tumor types and species.
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Fig. 1. Two common challenges with automatic mitosis detection task.

On an average WSI, among around 100,000 nuclei, 100-1000 mi-
totic figures are ‘rare events’ requiring high-resolution manual count-
ing. Such rare event detection at high resolution (40x magnification) is
taxing for humans and algorithms alike (He et al., 2016; Lin et al., 2017;
He et al., 2017). To ease this, pathologists usually scout at a lower
magnification to select a ‘mitotic hotspot’ based on cell density and
morphology, and then count mitoses at a higher magnification (Ellis
et al., 2005). An effective mitosis detection algorithm should maintain
accuracy while speeding up the counting process, especially when
processing large WSIs.

In this work, we aim to resolve the accuracy and speed chal-
lenges by introducing a novel mitosis detection method, inspired by the
multi-magnification workflow used by pathologists. In particular, our
approach consists of two steps: (1) segmentation of mitotic candidates
(Detecting Fast) using a novel model architecture, and (2) candidate
refinement by passing the candidates to a deeper classifier network to
differentiate between mitotic figures and mimickers (Detecting Slow).
To enable mitosis segmentation, we propose to generate mitosis masks
from point annotations using NuClick (Alemi Koohbanani et al., 2020).
For the first time, we investigate the effect of different combinations
of three well-known domain generalization techniques for mitosis seg-
mentation. We use this knowledge to design a robust model to counter
the domain shift caused by using different scanners. We show that our
proposed method outperforms all other state-of-the-art (SOTA) algo-
rithms in literature and achieved the first rank in both the MIDOG21
and MIDOG22 challenges. Furthermore, we showcase the practicality
of our algorithm by detecting mitotic figures in the breast cohort of
the TCGA dataset (TCGA-BRCA). In summary, the main contributions
of this paper include:

1. An efficient two-stage mitosis detection method based on a
novel segmentation model architecture and a deep classification
model.

2. A self-supervised training method to pretrain both encoder and
decoder parts of a segmentation model.

3. Investigation of the effect of different combinations of domain
generalization techniques on the mitosis segmentation task.

4. Release of the Al-generated results for TCGA-BRCA cohort con-
sisting of over 620 K mitotic figures (available at https://zenodo.
org/records/10245707).

5. Outperforming other SOTA algorithms in cross-validation exper-
iments while being considerably faster as well as ranking 1st in
MIDOG21 and MIDOG22 challenges.

2. Related works

Since 2012 (Krizhevsky et al., 2012) convolutional neural networks
(CNNs) paved the way for transformative advancements in computer
vision, with impressive results in image segmentation, detection, and
classification tasks (Li et al., 2021). Their subsequent ubiquity in CPath
made CNNs a cornerstone of various segmentation and classification
tasks, including the detection of mitotic figures (Mathew et al., 2021;
Dif and Elberrichi, 2020). The research community has responded to
this phenomenon with multiple AI challenges centered around mitotic
figure detection (Ludovic et al., 2013; Veta et al., 2019; Aubreville

Medical Image Analysis 94 (2024) 103132

et al,, 2021, 2022a). The first publicly available mitosis detection
challenges and datasets were ICPR2012 (Ludovic et al., 2013) and its
subsequent challenge MITOS-ATYPIA 2014, both of which consisted of
a limited number of cases and training images. At this stage, DL-based
methods were less prevalent, and the small image set was manageable.
This was followed by the TUPAC16 challenge (Veta et al., 2019), where
participants were tasked with counting mitotic figures and predicting
a WSI tumor proliferation score. More recently, the MIDOG21 and
MIDOG22 challenges focused on detecting mitotic figures in histology
images from various scanners to address domain shift (Aubreville et al.,
2021, 2022a). In these contests, all participants utilized CNNs for
mitotic figure detection.

2.1. Mitosis detection

Mitotic figure detection through DL usually involves three main ap-
proaches. The first employs patch-based classification, dividing regions
of interest (ROIs) or WSIs into small patches for CNN classification.
The second involves detection models that predict bounding boxes or
centroid points for the mitotic figures. The third approach uses segmen-
tation models to semantically delineate targets before determining the
mitotic centroid via post-processing.

Initial DL-based methods handled this task as a classification prob-
lem. Notably, Akram et al. (2018) used ResNet-12 for the task on the
TUPAC16 dataset (Veta et al.,, 2019) and improved their model by
fine-tuning it with additional mined mitotic figures. An ensemble of
CNNs was proposed by Tellez et al. (2018), with knowledge distillation
reducing computational needs and ‘HED stain augmentation’ increasing
the range of realistic H&E stain variations for better model training.
Despite their success, the severe limitation of these models lies in their
inefficiency, as they need to iterate through every high-resolution WSI
patch, with patches being small to contain a single mitosis.

Bounding box detection models, such as RetinaNet (Lin et al., 2017),
Cascade R-CNN (Razavi et al., 2021), and EfficientDet (Tan et al., 2020)
are more efficient for mitosis detection than patch-based models due
to their ability to process larger images, capturing more context, and
enabling faster predictions. For example, both Wilm et al. (2021b)
and Chung et al. (2021) used two different versions of RetinaNet for
mitosis detection while improving the domain generalization capability
of their models by incorporating domain adversarial training (Ganin
et al., 2016) and style transfer augmentation techniques, respectively.

Several approaches treated mitosis detection as a segmentation task
using methods like Mask R-CNN (He et al., 2017) or fully convolutional
networks (FCN) such as U-Net (Ronneberger et al., 2015), which use
large image patches to reduce processing times. Notably, Kausar et al.
(2020), Fick et al. (2021), and Sebai et al. (2020) optimized Mask
R-CNN for this purpose. Li et al. (2019)’s FCN model, SegMitosis,
used point mitosis annotations (weak labels) to form concentric circles,
achieving SOTA results on the TUPAC dataset using a concentric loss
in training. Additionally, Yang et al. (2021) proposed SK-Unet, an
improved U-Net model with selective kernels, that achieved the joint
first rank on the MIDOG21 challenge leaderboard. Interestingly, the
top three MIDOG21 entries turned the detection task into instance-level
segmentation. Yang et al. (2021) used HoVer-Net (Graham et al., 2019)
to generate nuclear segmentation masks and filter non-mitotic figures,
creating ground truth masks. Fick et al. (2021) manually segmented
100 mitotic figures to train an initial Mask-RCNN model, generating
pixel-level segmentation. Despite their superiority, segmentation ap-
proaches require exhaustive annotations and can be computationally
costly. Our pipeline mitigates these issues by using an interactive model
to generate reliable mitosis masks (Alemi Koohbanani et al., 2020) and
performing segmentation in a lower resolution.

Lastly, multi-stage methods, such as the ones used by Nateghi and
Pourakpour (2021), Liang et al. (2021) and Mahmood et al. (2020),
have gained traction. These typically involve finding mitotic candidates
using a bounding box detection model, followed by classification. Fick


https://zenodo.org/records/10245707
https://zenodo.org/records/10245707
https://zenodo.org/records/10245707

M. Jahanifar et al.

et al. (2021) implemented a two-stage process involving a Mask-RCNN
for segmenting mitotic figures, followed by classification through an en-
semble of DenseNet201 and ResNet50. Similarly, Kondo (2021) utilized
thresholding on blue ratio images for candidate mitotic region extrac-
tion before classification with a ResNet model. While these methods
improved performance, they also considerably increased computational
cost. We introduce a two-stage method with an adept segmentor for
better generalization, reducing false candidates while preserving high
sensitivity. By operating on downscaled images, our segmentation mod-
ule considerably lowers computational costs and enhances pipeline
efficiency.

2.2. Domain generalization

To address domain shift resulting from the varied scanner/source
use, diverse approaches have been proposed, with most employing
some form of color augmentation during training for enhanced algo-
rithm generalizability amidst domain shift (Yang et al., 2021; Razavi
et al., 2021; Kondo, 2021). Techniques such as the histology-specific
‘HED stain augmentation’-which deconvolves an image into Hema-
toxylin and Eosin stain channels and perturbs them-are shown to be
effective (Tellez et al., 2019; Nateghi and Pourakpour, 2021). Although
the effectiveness of this approach on permuting image color infor-
mation during model training to cover potential stain variations has
been investigated before (Tellez et al., 2019), its impact on mitosis
segmentation remains unexplored. Furthermore, stain normalization
methods like (Vahadane et al., 2016) are widely utilized (Razavi et al.,
2021; Liang et al., 2021) to reduce the domain shift caused by sample
preparation and scanner variance.

Some methods harnessed unlabeled images from varied scanners
through image synthesis techniques, generating new image variations
for training (Fick et al., 2021; Chung et al., 2021). Techniques like
Fourier domain mixing were also employed, swapping low-frequency
domain information between images for unsupervised stain normal-
ization and augmentation, potentially increasing model generalizabil-
ity (Yang et al., 2021).

Other strategies combatting domain shift in CPath include model
pretraining (Alemi Koohbanani et al., 2021; Vuong et al., 2022) and
domain-adversarial training (Ganin et al., 2016; Wilm et al., 2021b;
Lafarge et al., 2019), though their effectiveness may be task-specific
(Stacke et al., 2020; Jahanifar et al., 2023). The efficacy of these
domain generalization techniques and their combinations on mitosis
segmentation has yet to be explored. This study comprehensively inves-
tigates the impact of key domain generalization techniques on mitosis
segmentation, aiming to identify optimal strategies.

3. Methodology
3.1. Overview

The ‘Thinking, Fast and Slow’ theory by Kahneman (2011) considers
a dichotomy between two systems of thought where system 1, or
‘Thinking Fast’, makes decisions faster and instinctive while system 2,
or ‘Thinking Slow’, usually takes a more deliberate process to arrive at a
logical conclusion. Kahneman (2011) discusses the benefits and prop-
erties of each system and describes their importance. Many research
studies in artificial intelligence have been motivated by this theory to
come up with effective solutions for hard problems (Miech et al., 2021).

Metaphorically inspired by this theory, we propose the ‘Mitosis
Detection, Fast and Slow’ (MDFS) framework (shown in Fig. 2(b)
consisting of two main parts: (1) ‘Detecting Fast’, which is responsible
for finding mitosis candidates as fast and much as possible and (2)
‘Detecting Slow’, where a deeper model refines mitosis candidates to
eliminate mimickers. We approach candidate detection as a segmen-
tation problem where mitosis masks are acquired by leveraging an
interactive segmentation model, called NuClick (Jahanifar et al., 2019;
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Fig. 2. The overview of the proposed mitosis detection method: (a) data pre-processing
steps, where mitosis masks and mitosis/mimicker patches are generated, and (b) the
proposed ‘Detecting Fast’ and ‘Detecting Slow’ systems for candidate segmentation and
refinement.

Alemi Koohbanani et al., 2020). Because the goal of the ‘Detecting Fast’
system is to detect plausible mitotic candidates as fast as possible with
high sensitivity, we also propose a down-sampling step in the fast sys-
tem to further improve efficiency. Then, in the ‘Detecting Slow’ system,
we extract small patches around mitotic candidates at full resolution
and assess them using a deeper CNN. To make the entire framework
more robust, we also include special considerations to counter the
domain shift problem. We outline the proposed techniques in detail
in the following sections. It is important to clarify that our use of
the ‘Fast and Slow’ framework is metaphorical and does not directly
align with Kahneman’s cognitive systems although many attributes of
these systems are similar. In our view, the ‘Fast and Slow’ metaphor
provides an intuitive way to conceptualize such two-stage mitosis de-
tection methods, without strict adherence to its delineation of cognitive
processes.

3.2. Detecting fast: mitosis candidate segmentation

3.2.1. Network architecture

We propose an efficient segmentation model architecture, called
EUNet, for the mitosis detection, which follows the encoder-decoder
design of U-Net (Ronneberger et al., 2015). Here, we use a pre-trained
EfficientNet-BO model (Tan and Le, 2019) as the encoder and an
inverse design of that for the decoder part (using upsampling blocks
instead of down-sampling). In other words, we replaced the standard
convolution layers in the standard UNet architecture with the Mo-
bile Inverted Residual blocks coupled with a Squeeze-and-Excitation
mechanism (MIRSE block).

The exact design of the MIRSE block is depicted in Fig. 3a, where
a sequence of a 1 x 1 2D convolution layer, a K x K depth-wise con-
volution layer (to make the network lighter), a squeeze-and-excitation
(S&E) layer (Hu et al., 2018), another 1 x 1 2D convolution layer, and a
residual connection (to improve back-propagation and avoid vanishing
gradients) are incorporated. In all layers, the parameters K and F
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Fig. 3. Architecture of the proposed EUNet for mitosis candidate segmentation. For
each operation, its parameters are outlined in the parenthesis where K, F, and R denote
kernel size, the number of feature maps, and the number of repetitions, respectively.

denote the kernel size and number of feature maps, respectively. It
is worth noting that batch normalization (BN) (He et al., 2016) and
Swish activation function (Ramachandran et al., 2017) are applied on
the output of all convolution layers in the MIRSE block (except for
the last one that only contains BN). The S&E layers provide a self-
attention mechanism inside each layer of the network to calculate the
importance of different feature maps and weight them accordingly.
The squeeze parameter, .S, of the S&E layer in this work is set to be
0.25. The ‘Upscaling Block’ in the proposed network architecture is
a 3 x 3 transposed convolution layer with a stride of 2 to increase
the spatial size of input feature maps by a scale of 2. Also, this block
concatenates the resulting feature maps from the same level of the
encoder (retrieved via ‘Skip connection’) with the upsampled feature
maps to benefit from the high-resolution information available in the
encoder part. The motivation behind incorporating elements such as
Swish activations and other architectural modifications is to leverage
advancements and proven benefits from related studies. These choices
have been demonstrated to enhance the performance and efficiency of
deep learning models in various tasks, including image classification
and detection (Ramachandran et al., 2017; Tan and Le, 2019; Tan et al.,
2020; Sandler et al., 2018).

The overall architecture design of the proposed EUNet model is
described in Fig. 3b where the order of different building blocks, their
design parameters (K and F), and the number of repetitions in each
level (R) of the encoder and decoder parts are provided. In the star-
marked MIRSE blocks of the encoder path, the first convolution layer
is applied with a stride of 2 to decrease the spatial resolution of feature
maps by a factor of 2.
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Fig. 4. Mitosis segmentation post-processing steps.

3.2.2. Mitosis masks generation

In order to provide stronger supervision and train our proposed
segmentation model, we use NuClick (Alemi Koohbanani et al., 2020;
Jahanifar et al., 2019) to obtain mitosis masks from mitosis point anno-
tations. NuClick is an open-source' interactive segmentation model that
can generate nuclei masks from input images using point annotations
as guiding signals. The outputs of NuClick have proved to be reliable in
various applications (Alemi Koohbanani et al., 2020; Shephard et al.,
2021; Graham et al., 2021; Gamper et al., 2020). Using NuClick, we
convert all the point annotations into mitosis masks to be used during
the training of our segmentation models (as shown in Fig. 2a).

3.2.3. Training

Our segmentation model is trained on image tiles of size 512 x 512
pixels in all experiments. However, there is a severe class imbalance
when comparing patches with mitotic figures (positive patches) to those
with no mitotic figures (negative patches). This may lead to a decline
in model sensitivity, owing to the model seeing many more negative
patches during training. To mitigate this effect, we incorporated on-
the-fly under-sampling of negative patches where each batch is forced
to have an equal number of positive and negative patches.

In all experiments, model training was done in two phases. In the
first phase, we froze all the encoder layers, only training the decoder,
for 10 epochs. For the second phase, we trained the whole network for
50 epochs. We used the Jaccard loss function (Jahanifar et al., 2018)
and the Adam optimizer (Kingma and Ba, 2014) with learning rates of
0.003 and 0.0004 to optimize the model during the first and second
phases, respectively.

3.2.4. Post-processing

For post-processing, we performed simple thresholding of the pre-
diction map y, to obtain a binary mitosis mask. This threshold is
set based on the results from cross-validation experiments (see Ap-
pendix A). Then, to merge the prediction masks for mitotic figures
in the anaphase or telophase, we apply a morphological dilatation
operation with a disk structuring element of 18 pixels radius because
daughter cells of a mitotic figure are usually closer than that radius in
these phases (see Fig. 4 for an example). Following this, we extracted
the centroids of connected components in the processed mask as mitosis
candidates.

3.3. Detecting slow: mitosis candidate refinement

Within the ‘Detecting Fast’ system of our framework, we use a
mitotic candidate segmentor, operating on a down-scaled input image
to improve the processing speed. Since we do not use the full-resolution
input image, it is expected that the detected candidates will not be of
sufficient quality. To compensate for this, we consider a deeper CNN
classifier in the ‘Detecting Slow’ system of the MDFS framework to
accurately classify those candidates into mitoses or mimickers. We use
EfficientNet-B7 (Tan and Le, 2019) as the mitotic candidate classifier

L https://github.com/mostafajahanifar/nuclick_torch.
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which used 128 x 128 candidate patches extracted from full-resolution
images as input and classify them as either mitotic figures or mimickers.

To deal with the problem of class imbalance between mitosis and
mimicker categories, we incorporate under-sampling of the mimicker
class as well as a weighted cross-entropy loss (where the mitosis class
is given twice the weight) during the model training. These techniques
allow us not to lose many real mitotic figures in the refinement phase
and keep the overall sensitivity of the proposed method as high as
possible.

3.4. Addressing domain shift

3.4.1. Stain normalization

Stain normalization is one of the mainstream techniques to address
stain variation in digital pathology and various methods have been in-
vestigated to achieve it (Roy et al., 2018). In this study, we investigate
the effect of using the Vahadane stain normalization method (Vahadane
et al,, 2016) on mitosis segmentation. The Vahadane method has
been selected as it preserves the structural properties of stained tissue
samples and is robust to stain sparsity that may be found in pathology
images.

In particular, Vahadane et al. (2016) uses Sparse Non-negative
Matrix Factorization (SNMF) to estimate the stain matrix S and concen-
tration matrix C from the source and target images. Then, it scales the
concentration map of the source image and combines it with the stain
matrix of the target image to normalize the source image (Vahadane
et al., 2016).

3.4.2. Stain augmentation

We incorporate HED stain augmentation in the training of our
models by randomly changing the concentration of the H&E stains
in the source image. We first use the SNMF algorithm to extract the
source stain matrix S and concentrations matrix C and then we scale
and shift the stain concentrations and finally convert the altered stain
information back to RGB space, thus attaining an augmented image I:

i=1T,exp(-S(aC +p)), @

where I is the incident intensity of the light source driven from the
source image (I), « ~ U(0.75,1.25) and p ~ U(—0.2,0.2) are stain
concentration scale and shift factors randomly selected from uniform
distributions. It is important to note that we could simultaneously
perform stain normalization to a target stain matrix and stain aug-
mentation by setting the S matrix in Eq. (1) to a pre-extracted target
stain matrix. In this work, we use the TIAToolbox (Pocock et al., 2022)
implementation of both stain normalization and stain augmentation
algorithms. Hereafter, by stain augmentation, we mean HED stain
augmentation.

3.4.3. Self-supervised learning

While labeled mitosis datasets are scarce, unlabeled WSIs and his-
tology images presenting vast stain and scan quality variations are
abundant. Ideally, these vast datasets can be utilized to enhance per-
formance on limited mitosis datasets. In this pursuit, self-supervised
learning (SSL) algorithms have shown success in extracting relevant
visual features from unlabeled data (Jing and Tian, 2020). This study
explores the effects of three pretraining algorithms on the mitosis
segmentation task using an unlabeled histology image dataset. Until
now, SSL has mainly been used in simpler CPath tasks, like patch clas-
sification (Stacke et al., 2020; Vuong et al., 2022; Alemi Koohbanani
et al., 2021).

To steer network learning towards histology-relevant features, we
propose a self-supervised histology learning (SSHL) method to pretrain
the entire segmentation network (both encoder and decoder). This
method, inspired by Alemi Koohbanani et al. (2021), utilizes self-
supervision for two histology-related tasks: (1) image magnification
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Fig. 5. Self-supervised Histology Learning (SSHL) for pretraining.

power prediction and (2) Hematoxylin channel (H-Channel) segmen-
tation as depicted in Fig. 5. Here, two output branches are engaged,
with the first branch leveraging magnification power labels for a cross-
entropy loss function, and the second branch using on-the-fly generated
Hematoxylin segmentation maps. These maps are obtained as follows:
first, the H-channel of the input image (H) is extracted using the
Vahadane method, then a threshold = = 0.7 - pog + p, is calculated for
the binary conversion to B = H < ¢ where pyg and p, are the 98th
and 2nd percentiles of H, respectively. The binarized H-Channel, B,
represents the Hematoxylin-rich areas in the image. Post binarization,
morphological opening operations are performed on the resultant H-
Channel to eliminate spurious small objects. The training procedure
is similar to the one explained in Section 3.2.3, combining the loss
functions of the classification and segmentation tasks:

3
Lssir = Liaccara (B:Bp) = Z m; log (m';), @
p

where B, m';, and m; are the predicted map of the binarized H-Channel,
magnification power prediction and ground truth at one of 3 categories
{5%, 10x,20x}, respectively.

For comparison, we additionally pretrain the segmentation model
encoder on the same dataset using a self-supervised contrastive learn-
ing (SSCL) algorithm, SimCLR (Chen et al., 2020), and a supervised
contrastive learning method, SCL (Khosla et al., 2020), predicting the
magnification of the input image while augmenting it extensively.
For all pertaining tasks, we attained more than 250,000 tiles of size
512 x 512 pixels extracted at three different levels of magnification (5x,
10%, 20x) from the training set of the Camelyonl6 dataset (Bejnordi
et al., 2017).

3.5. Mitosis detection in WSIs

The standard mitotic count or score within a 2 mm? hotspot Region
of Interest (ROI) serves as a proxy for overall mitotic activity through-
out a WSI, due to the impracticality of manual counting across an
entire tissue sample (Rakha et al., 2008). This approach, however, car-
ries inherent subjectivity in ROI selection, impacting the final mitotic
score. This subjectivity can be minimized by leveraging DP for mitosis
detection across the entire WSI, necessitating an efficient method for
accurately detecting mitotic figures within a reasonable time frame.

We thus propose a WSI processing pipeline where TIAToolbox’s
tissue segmentation model (Pocock et al., 2022) is used to identify the
tissue region, which operates on image tiles of 1024 x 1024 pixels
extracted at 8 microns-per-pixel resolution (on average, the model takes
around 23 s to process a WSI). From the tissue region, tiles of 512 x 512
pixels in size with 50-pixel overlap are extracted at 0.25 microns-
per-pixel resolution (approximately 40x objective magnification). The
proposed method then detects mitoses within these extracted patches.
In this stage, the ‘Detecting Fast’ system is trained on down-scaled
images (with a scaling factor of 0.75) to identify candidates (tiles are
resized accordingly). The ‘Detecting Slow’ system refines candidates
at full resolution (0.25 pm/pixel) following the MDFS method to en-
sure high-quality detection while minimizing processing time (refer
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Section 4.3.1 and Table 1). Once mitosis detection is completed, the
mitotic hotspot region can be deterministically identified through an
overlapping window search across the WSI, selecting the window with
the maximum mitosis count. Subsequently, the mitotic score for the
hotspot can be computed as detailed below.

Clinically, particularly in breast cancer cases, a mitotic score (M S)
is estimated from the Mitotic Count (M C) in a hotspot region exhibiting
high tumor activity. Specifically, the Nottingham breast cancer grading
system proposes counting mitoses in a 2 mm? region to derive the M .S
across three categories (M S1, M S2, M .S3) (Ellis et al., 2005):

1, MC<8
MS =12 9<MC<I16 3)
3, MC>17

4. Materials and experiments
4.1. Datasets

MIDOG. The MIDOG21 challenge dataset (Aubreville et al., 2022b),
employed for tuning parameters and model evaluation, provides a
training set with 150 labeled and 50 unlabeled cases (images covering
2 mm? regions), hosting 1721 mitotic figures and 2714 mimickers.
Evaluation of the associated 80-case MIDOG21-test set is achieved
by submitting to the challenge leaderboard, as the data is not pub-
licly accessible. Notably, the MIDOG datasets, acquired via various
scanners, exhibit domain shifts. This property informed our 3-fold leave-
one-domain-out cross-validation strategy, ensuring each fold contained
images from a distinct scanner. Furthermore, we train and validate the
proposed MDFS method on MIDOG22 training set (Aubreville et al.,
2022a) which contains 354 labeled images from canine lung cancer,
human breast cancer, canine lymphoma, human neuroendocrine tumor,
and canine cutaneous cast cell tumor (3-fold cross-validation on train-
ing domains with pooled subsets for model selection). The external test
set for MIDOG22 contains 100 images from different tumor types that
are not provided in the training set, making mitosis detection more
challenging and requiring the MDFS to capture more generalizable
features. The mitosis masks for both MIDOG21 and MIDOG22 datasets
are obtained using the approach explained in Section 3.2.2.

TUPAC. The TUPAC dataset (Veta et al., 2019) offers a publicly ac-
cessible 73-case training set from three centers, hosting 1599 mitotic
point annotations. A test set of 34 cases with no available labels exists
for comparison with other methodologies (Akram et al., 2018; Kausar
et al., 2020; Sebai et al., 2020; Li et al., 2019; Mahmood et al., 2020).
Evaluation metrics for the final test set are derived by submitting results
to the TUPAC challenge organizers.

ICPR2012. ICPR2012, a widely-cited mitosis dataset, is the sole dataset
providing mitosis mask annotations for its five cases (Ludovic et al.,
2013). Comprising 226 and 103 mitotic figures in training and test
sets respectively, only the test set is used here for generalizability
experiments.

4.2. Evaluation metrics

4.2.1. Detection

To avoid over-representation of cases with no mitoses in the eval-
uation metric, overall F1 scores (F1) were used to rank the differ-
ent mitosis detection methods (Aubreville et al., 2022b; Veta et al.,
2015). We also reported overall recall/sensitivity (Rec) and precision
(Prc) metrics to compare different methods more thoroughly in all
cross-validation and external tests on all datasets.
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4.2.2. Mitotic score estimation

Mitotic score (M S) estimation in WSIs is crucial for accurate cancer
grading, particularly in breast cancer, where inaccurate M.S estimation
can misinform treatment planning (Elston and Ellis, 1991). Although
other cancer types possess unique scoring systems, exploring these is
beyond the study’s scope. However, understanding the error in breast
cancer M S estimation is essential for this work.

While neither MIDOG nor TUPAC datasets provide ground truth M S
information, all MIDOG images and 50 TUPAC images (cases 24-73)
cover approximately 2 mm? sample area. Using available mitotic count
(MC) data (from GT annotations), we estimate each image’s expected
M S via Eq. (3).

Since M S estimation is an ordinal regression task, it requires an
appropriate evaluation metric. Quadratic Weighted Kappa (QWK) is
commonly employed for similar tasks (Veta et al.,, 2019), but data
population imbalance in available datasets and real-world data render
it unsuitable for this task. We, therefore, propose a mitotic score error —
an average category-based mean squared error — to evaluate algorithm
performance on the M S estimation task:

N,

1Y« (MS,-Ms)
£ 3 le n;A s ’ @
where ]\/431 and MS, are GT and predicted mitotic scores for case
n, respectively. T, = {nll\//I—E,, = s} and N, are the set of all cases
belonging to each mitotic score category s € {1,2,3} and their re-
spective population. The squared error term emphasizes catastrophic
prediction errors (M S3 predicted as M S1 or vice versa) and calculating
the mean squared error for each category separately mitigates bias
towards higher population categories.

4.3. Validation experiments

4.3.1. Internal cross-validation

The proposed MDFS method’s performance was evaluated through
cross-validation on the MIDOG21 and TUPAC training datasets. Results
for the proposed EUNet segmentation model (‘Detecting Fast’ system)
and the full pipeline (MDFS) are shown in Table 1 for the MIDOG21
dataset, with F1 scores of 0.754 and 0.785, respectively. Our method
surpasses UNet (Ronneberger et al., 2015), RetinaNet (with ResNet-50
backbone) (Lin et al., 2017), and EfficientDet (with Efficient-Net-B4
backbone) (Tan et al., 2020) by 18%, 6%, and 5% in F1, respectively.
Similar improvements are evident in both recall and precision metrics.

MDFS outperformed all SOTA mitosis detection methods when
cross-validated on the TUPAC dataset, achieving an overall F1 of 0.767
(Table 2). This score outstrips the strongest reported TUPAC results by
5% (Li et al., 2019). Additionally, the proposed segmentation model,
EUNet, demonstrated a high standalone detection accuracy.

It is important to mention that based on the results in Table 1,
we select the scaling factor (Scl) of 0.75 for the rest of the validation
experiments reported in this study (except for the results reported in
ablation studies — Section 4.6). Please refer to Section 4.4 to find more
details about the added value of the proposed MDFS method.

For mitotic score estimation, we assessed five algorithms on the
MIDOG21 and TUPAC datasets. Confusion matrices and correlation
plots for the mitotic count and mitotic score estimations are shown in
Fig. 6, along with the proposed mitotic score error M E and Pearson’s
correlation coefficient (). The MDFS method produced the lowest ME
values of 0.183 and 0.066 for the MIDOG21 and TUPAC datasets,
respectively, significantly outperforming the baseline (RetinaNet). Our
method’s predicted mitosis counts also exhibited a strong correlation
with GT counts, with Pearson’s r values of 0.97 and 0.98 for the
MIDOG21 and TUPAC datasets, respectively.

The data in Fig. 6 shed light on ROI scoring performance. While
baseline RetinaNet and our method achieve F1 scores of 0.720 and
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Table 1
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Results of internal cross-validation experiments on the MIDOG21 training set as well as the effect of down-scaling the image on the performance of the candidate segmentation and
the full detection pipeline (Time of EUNet at segmentation scale (Scl) of 1 is the reference for Speed gain calculation). The reported time is the average ROI processing duration

measured in seconds.

Scl F1 Rec Prc Time Speed
UNet 1 0.601 + 0.132 0.531 + 0.154 0.693 + 0.075 9.26 0.29x
RetinaNet 1 0.720 + 0.122 0.726 + 0.095 0.714 + 0.110 9.88 0.28x
0.5 0.581 + 0.138 0.642 + 0.122 0.531 + 0.131 0.76 3.61x
EfficientDet 0.75 0.608 + 0.134 0.691 + 0.114 0.543 + 0.126 1.71 1.60x
1 0.726 + 0.115 0.731 + 0.107 0.722 + 0.088 3.05 0.90x
0.5 0.612 + 0.126 0.635 + 0.118 0.592 + 0.127 0.83 3.31x
EfficientDet+EfficientNet 0.75 0.620 + 0.108 0.581 + 0.148 0.666 + 0.095 1.78 1.54%
1 0.739 + 0.015 0.691 + 0.110 0.795 + 0.041 3.11 0.88x
0.5 0.714 + 0.006 0.714 + 0.053 0.715 + 0.053 0.70 3.94x
EUNet 0.75 0.740 + 0.013 0.782 + 0.039 0.704 + 0.057 1.46 1.88x
1 0.754 + 0.033 0.824 + 0.035 0.695 + 0.069 2.75 1.00x
0.5 0.768 + 0.011 0.744 + 0.049 0.794 + 0.035 0.76 3.59%
MDFS 0.75 0.781 + 0.006 0.764 + 0.025 0.799 + 0.024 1.53 1.80x
1 0.785 + 0.004 0.771 + 0.020 0.801 + 0.021 2.80 0.98x
Table 2
Results of internal cross-validation experiments on the TUPAC training set.
Method F1 Rec Prc
SmallMitosis (Kausar et al., 2020) 0.599 0.873 0.456
EfficientDet (Tan et al., 2020) 0.608 0.682 0.549
Mahmood et al. (2020) 0.641 0.642 0.641
MaskMitosis (Sebai et al., 2020) 0.660 0.689 0.633
Akram et al. (2018) 0.690 0.661 0.722
SegMitos (Li et al., 2019) 0.717 - -
EUNet 0.738 + 0.051 0.852 + 0.064 0.651 + 0.033
MDFS (proposed) 0.767 + 0.023 0.833 + 0.016 0.712 + 0.030

Table 3
Results of external validation experiments on the MIDOG21 test set for the baseline and the top seven algorithms from the MIDOG21 leaderboard.
Method Details F1 Rec Prc
RetinaNet Baseline detection with stain normalization and data aug. 0.698 0.699 0.696
Razavi et al. (2021) Cascade R-CNN 0.706 0.706 0.708
Liang et al. (2021) Fused Detector and Deep Ensemble Classification 0.706 0.686 0.727
Wilm et al. (2021b) MIDOG reference algorithm: RetinaNet with Domain Adversarial branch 0.710 0.731 0.690
Chung et al. (2021) RetinaNet-101 with Style transfer augmentation 0.724 0.678 0.776
Fick et al. (2021) Mask R-CNN + ensemble of ResNet and DenseNet 0.736 0.709 0.764
Yang et al. (2021) Sk-UNet Model with Fourier Domain for Mitosis Detection 0.747 0.741 0.753
MDFS (proposed) EUNet (Detecting Fast) + EfficientNetB7 (Detecting Slow) 0.747 0.762 0.733

0.785 respectively on the MIDOG21 dataset, the difference in cor-
relation scores is only 2%—the standard metric for ROI-based mi-
tosis assessment (Veta et al.,, 2019, 2015, 2016). In contrast, our
proposed mitotic score error produced M E values of 0.351 and 0.183,
respectively, emphasizing its efficacy for mitotic score estimation by
showing more differentiation. This difference is further highlighted by
comparing three methods (Point-EUNet, Mask-EUNet, and MDFS) on
the TUPAC dataset in Fig. 6b. Despite achieving identical correlation
coefficients (0.98), the ‘M E metric differentiates the methods’ perfor-
mance with values of 0.15, 0.13, and 0.07, respectively. These results
underscore the proposed metric’s ability to accurately evaluate mi-
totic score estimation performance, suggesting its suitability for future
comparative studies.

4.3.2. External validation

Our proposed method was tested on 34 TUPAC dataset images and
results were submitted for evaluation. The external validation results
are detailed in Table 4, comparing our proposed EUNet model and
MDFS pipeline performance against the 11 leading methods in TUPAC’s
2016 Task 3 (mitosis detection) challenge. Only three out of these
methods have detailed algorithm descriptions (Radboud (Tellez et al.,
2018), Warwick (Akram et al., 2018), and SegMitos (Li et al., 2019)),
with the rest summarized in the TUPAC challenge paper (Veta et al.,
2019). TUPAC challenge participants reported solely overall F1 values.

When evaluated on the TUPAC test set (without external data), our
method outperforms all other methods (achieving an F1 of 0.675).
This underscores the efficacy of our ‘Detecting Slow’ system where
the F1 improves by 5% primarily by boosting precision upon the
addition of a deep classifier atop our EUNet candidate segmentation
model. This enhancement is made at a slight computational speed
sacrifice (Table 1, Section 4.3.1). Hence, our method outperforms the
challenge winner, Lunit, which managed an F1 of 0.652. Subsequent
post-challenge submissions, specifically the SegMitos method (Li et al.,
2019), yield comparable results to ours (F1 = 0.669). Nevertheless,
our method significantly surpasses all other techniques, which typically
merge patch classifiers with hard-negative mining.

The MIDOG test set comprises 80 images from diverse breast tumor
instances scanned using four different scanners, two of which were uti-
lized for the MIDOG training set acquisition. Methods are evaluated by
submission to the challenge platform, similar to TUPAC. Our method’s
results, alongside the top eight performing methods in the MIDOG21
challenge’s final testing, are displayed in Table 3. Our algorithm ranks
top (tied with Yang et al. (2021)), winning the challenge with an F1
of 0.747 and the highest recall of 0.762 (precision of 0.733). It proves
superior to all region proposal-based algorithms such as bounding box
detection algorithms (Lin et al., 2017; Razavi et al., 2021; Liang et al.,
2021; Wilm et al., 2021b; Chung et al., 2021) and Mask-RCNNs (Fick
et al., 2021), raising the detection F1 score by roughly 5% compared
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Fig. 6. Confusion matrices for mitosis-score estimations (MS1, MS2, MS3) and mitosis score error (M E), with correlation plots and Pearson’s correlation coefficient, are reported
for mitosis-count predictions from five different methods when evaluated on the MIDOG21 (a) and TUPAC (b) datasets.

Fig. 7. Mitosis detection results of the proposed method on three different images (images in panels ‘a,c’ from MIDOG21, and panel ‘b’ from TUPAC dataset in the top) with the
zoomed-in patches of some of the detected mitoses/mimickers in them (panels a#,b#, and c# in the bottom). Circles or patch borders of the color green, blue, or yellow indicate
true positive, false negative, and false positive predictions concerning ground truth annotations, respectively.
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Table 4
Results of external validation experiments on the TUPAC test set.
Methods Details F1 Rec Prc
Heidelberg? Combine residual networks with Hough voting and hard-negative mining 0.481 - -
Tellez et al. (2018) Multi-CNN patch classifiers — Use private auxiliary data 0.541 - -
PIEAS® CNN patch classifier using auxiliary ICPR2012/2014 datasets 0.571 - -
Microsoft research® Shallow CNN patch classifier using auxiliary ICPR2012/2014 datasets 0.596 - -
Contextvision® CNN pixel classifier similar to Ciresan et al. (2013) and hard-negative mining 0.616 - -
CUHK?* Custom CNN patch classifier using auxiliary ICPR2012/2014 datasets 0.620 - -
HUST® Custom CNN patch classifier with hard-negative mining 0.626 - -
Akram et al. (2018) ResNet patch classifier trained on TUPAC+external dataset 0.640 0.671 0.613
IBM research?® Patch classification using Wide residual network and hard negative mining 0.648 - -
Lunit® ResNet patch classifier with hard-negative mining 0.652 - -
Li et al. (2019) Weakly (point) supervised mitosis segmentation concentric loss 0.669 0.700 0.640
EUNet Only segmentation part (Detecting Fast) 0.629 0.794 0.521
MDES (proposed) EUNet (Detecting Fast) + EfficientNetB7 (Detecting Slow) 0.675 0.770 0.600
2 No further information/citation is found for these entries except for the provided details.
to the RetinaNet baseline. Notably, other two-stage methods that used 0.90 T
. . i . i ateghi et al.
a bounding box detector for candidate detection (like Liang et al. . mEm RetinaNet
(2021) in Table 3 and Nateghi and Pourakpour (2021) where authors 0:80 mm Razavi eff'-
. . . . . BN Liang etal.
used a combination Faster R-CNN and EfficientNet-BO and achieved g073 Wil et al,
. 30.70
F1 of 0.676) performed considerably worse than the proposed method i " mmm Chung et al
. . . PR w 0.65 Fick et al.
that uses EUNet (a segmentation model) in the first stage. This is 0.60 . Sangetial.
in line with our finding in internal cross-validation experiments in iEs Proposed
Table 1 where the combination of EUNet and EfficientNet (MDFS) 0'50
worked considerably better than the combination of EfficientDet and seannera scanner D ScannSrE: Scannerk  Average
. . 7 73 PN
EfficientNet. e 7 PErE 2al
The bar chart of Fl-scores of top methods over the cases from the ?6 - (VR
four scanners (domains) in the test set is presented in Fig. 8 to exam- e = \
ine the method’s performance across different domains. Only images .,’.,“,' =
from ‘Scanner A’ are used in training, with the other three classified >4

as ‘out-of-domain’ scanners. Our method consistently performs well
across all scanners, especially ‘Scanner A’ and ‘Scanner E’ (achieving
F1 of 0.837 and 0.808 respectively). With an F1 of 0.677, ‘Scanner
D’ results fall outside the top 3 performers. Conversely, Yang et al.
(2021) achieved F1 of 0.726 potentially due to their unique Fourier
domain-mixing algorithm, incorporating unlabeled ‘Scanner D’ images
into training. Finally, we computed the averaged domain-level F1 score
by independently averaging the F1 for each scanner. This yielded a
superior domain-level F1 of 0.747 + 0.08 across all scanners, compared
to Yang et al. (2021) (0.734 + 0.07) and other methods. The averaged
domain-level F1 treats each scanner equally, whereas the overall F1
introduced in Section 4.2.1 could be influenced by scanners with more
images or mitotic instances.

4.3.3. Independent cross-validation

Finally, we aim to demonstrate the generalizability of the proposed
model on external data from different dataset sources. To this end, we
train our MDFS method on either TUPAC or MIDOG21 data, before
testing it on the training set of the other dataset. In addition, we report
the results of TUPAC and MIDOD21 models on the ICPR dataset. The
images of the test sets in this experiment are not only from different
sources but also have been annotated with different annotation pro-
tocols. The results for these experiments are reported in Table 5. We
observe that the model trained on the TUPAC data shows good general-
izability to other datasets, achieving F1 scores in the range of 0.758 and
0.745 on the MIDOG training set and ICPR2012 test set, respectively.
Similarly, the model trained on the MIDOG dataset also demonstrates
competitive performance with F1 scores, especially on the ICPR2012
test set. It is important to note that due to variations in annotation
protocols (posterior shift) and potential prior shifts (variations in the
distribution of labels in different datasets), we refrain from making
direct comparisons regarding the superiority of one model over the
other.

"~ Scanner A ~Scanner B
Fig. 8. Results of the top performing methods of the MIDOG21 challenge on images
from different scanners.

Table 5
Independent cross-validation experiments where the model is trained on the ‘Source
Dataset‘ and tested on the ‘Target Dataset’.

Source dataset Target dataset F1 Rec Prc

TUPAC MIDOG21 0.758 0.714 0.807
MIDOG21 TUPAC 0.697 0.708 0.686
MIDOG21 ICPR2012 0.736 0.685 0.796
TUPAC ICPR2012 0.745 0.695 0.803

4.4. Added value of ‘Detecting Fast’ and ‘Detecting Slow’

The ‘Detecting Fast’ system’s efficacy in our MDFS framework
was assessed by testing various down-sampling scales for the resizing
module preceding the mitosis candidate segmentor (Fig. 2b). Stain-
normalized images were used without stain augmentation for these
experiments to prevent potential random effects due to data variability,
ensuring fair comparisons with RetinaNet and EfficientDet. Consider
the 0.75 down-scaling ratio from Table 1 for an example, although
performance metrics seem reduced (F1 = 0.740) compared to using
full image resolution (F1 = 0.754), the F1 is only 0.004 lower after
applying ‘Detecting Slow’ (i.e., MDFS pipeline) (0.785 for full resolution
and 0.781 when down-scaled by 0.75), while being about 1.8 times
faster. We use the EUNet algorithm at full resolution (scale = 1) as a
time baseline and indicate other algorithms’ speed gain relative to it in
Table 1. The proposed EUNet and full pipeline outpace EfficientDet and
RetinaNet bounding box detection models, although deeper encoders
may provide better F1 scores for bounding box detection models at
increased computation time.

The enhancement offered by a second-stage candidate classifier
extends beyond just EUNet. As demonstrated in Table 1, integrating
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b) False Negative examples that were misclassified by Efficient-Net-B7 (Detecting Slow)
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Fig. 9. Challenging mitotic figures that were missed by MDFS framework either in candidate segmentation phase (a) or candidate refinement phase (b). Images are collected from

the results on the MIDOG21 dataset.

the EfficientNet classifier as the secondary mitosis refinement to the
EfficientDet candidate detector (‘EfficientDet+EfficientNet’) results in
improved mitosis detection performance across all scales compared to
using only EfficientDet. Nevertheless, it appears that EfficientDet might
not serve as an optimal choice for the initial detection stage when
compared to EUNet. EfficientDet performance notably declines with
lower-resolution images (from 0.726 to 0.581 in F1, over 14% decrease
in performance), preventing the realization of both speed enhancement
and sustained high accuracy in a two-stage pipeline, a capability that
is very well realized by EUNet.

Moreover, comparing the running time of the EUNet (with approx-
imately 11M parameters) and speed gain with the full MDFS pipeline
at each scale reveals that adding ‘Detecting Slow’ atop ‘Detecting Fast’
incurs minimal computational overhead (for instance, running time
only increases about 50 ms for scale 1) while significantly enhancing
detection F1 (about 5% for scale 0.5). This is primarily because the pro-
posed pipeline’s second system only processes a lower number of small
patches of mitosis candidates although this system uses a deeper and
slower network (with approximately 65M parameters). Benchmarking
experiments were run on a Nvidia DGX-2 device with one Tesla V100
GPU.

4.5. Qualitative assessment

In our study, we also conduct a qualitative evaluation of our mitosis
detection approach. We randomly select three images, images a and c
from the MIDOG dataset and image b from the TUPAC dataset, for in-
depth analysis (Fig. 7). In these larger images, TP, FP, and FN detections
are denoted by green, yellow, and blue circles, respectively. We pick
eight unique detections from each image for detailed visualization.
We randomly choose TPs and display all FPs and FNs beneath the
associated larger image, color-coding the detection boundaries to match
the circles above.

Our examination of Fig. 7 revealed inconsistencies in mitotic figure
annotations in both TUPAC and MIDOG21 datasets. We confirmed
these inconsistencies by consulting pathologists who evaluated the
selected detections (highlighted below the larger images in Fig. 7).
Though their expert opinion was sought, we acknowledge mitosis
interpretation is not definitive and can vary among pathologists (Veta
et al., 2016; Ibrahim et al., 2022; Alkhasawneh et al., 2015). We miti-
gated bias by blinding the pathologists to the patches’ association with
our algorithm’s detections and providing full images for context. The
pathologists affirmed that all patches, excluding c6, contained mitotic
figures. This indicates that the original annotators may have overlooked
six mitoses in these ROIs. Interestingly, our pathologists identified an
additional mitotic figure missed by both the original annotators and our
algorithm. However, their validation was limited to typical examples
that are usually recognizable by breast pathologists.

Our observations corroborate existing literature on the difficul-
ties of mitotic figure detection and inter-observer variability impli-
cations (Veta et al., 2016; Ibrahim et al., 2022; Alkhasawneh et al.,
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2015; Saldanha et al., 2020; Bertram et al., 2020; Molenaar et al.,
2000; Lashen et al., 2021; Ibrahim et al., 2023). They also under-
scored the need for continuous refinement of annotation process (by
using PHH3 [HC staining (Alkhasawneh et al., 2015; Ibrahim et al.,
2023; Tellez et al., 2018), using well-established annotations proto-
cols/guidelines (Lashen et al., 2021; Ibrahim et al., 2022), or consen-
sus of pathologists observations (Wilm et al., 2021a; Bertram et al.,
2019)) and detection algorithms to account for the inherent limita-
tions and complexities of datasets. This nuanced understanding informs
the development and evaluation of mitotic detection methodologies,
emphasizing both the strengths and potential areas of improvement.

Despite the decrease in the false positive rate for the EUNet seg-
mentation model after the hard-negative mining phase (see Tables 1
and 2 where MDFS precision increases over EUNet), there remains a
risk of discarding true positives during classification. In Fig. 9, we
present 110 false negative figures overlooked by EUNet in the ‘De-
tecting Fast’ system or misclassified by the EfficientNet-B7 model in
the ‘Detecting Slow’ system. Most missed samples in Fig. 9 are small,
particularly those overlooked in the first phase (fourth row of Fig. 9a).
Also, anaphase mitotic figures with distantly spaced daughter cells
pose challenges for segmentation and classification tasks (second row
of Fig. 9a). Some mitotic figures resemble inflammatory cells and are
thus misclassified in the second phase (first row of Fig. 9b), and some
atypical mitotic figures are even difficult for the ‘Detecting Slow’ system
(third row of Fig. 9b).

4.6. Ablation studies

To optimize our framework and assess its different aspects, we
conducted ablation studies using the MIDOG21 training set and 3-fold
cross-validation as detailed in Section 4.1. In these experiments, the
scaling factor in the ‘Detection Fast’ system was set to 1 to fully utilize
the data.

4.6.1. Supervision for EUNet

We trained our EUNet alongside RetinaNet (Lin et al., 2017) and
EfficientDet (Tan et al., 2020) on candidate detection, using dilated
point annotations as ground truth masks (Point-EUNet). It achieved
an F1 score, recall, and precision of 0.731, 0.775, and 0.693, re-
spectively. This lets us compare supervisory signal performance. The
EUNet trained on mitosis masks (Mask-EUNet) attained an F1 of 0.754,
significantly outperforming both bounding box detection methods (see
Table 1). Intriguingly, Point-EUNet outperformed both bounding box
models but was still inferior to Mask-EUNet. We propose that using
a segmentation model for mitosis candidate detection is a suitable
approach.
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Table 6
Effect of using different pretraining methods on the performance of the mitosis
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Table 8
Cross-validation and external test results for mitosis detection on MIDOG22 dataset.

candidate segmentation model. Method Set F1 Rec Prec
Method Pretrain F1 Rec Pre Yang et al. (2021) Test 0.658 0.528 0.875
ImageNet Encoder 0.722 0.760 0.687 Wilm et al. (2021b)? Test 0.713 0.663 0.771
SimCLR Encoder 0.716 0.735 0.698 Kotte et al. (2022) Test 0.751 0.764 0.738
SCL Encoder 0.716 0.703 0.729 Saipradeep et al. (2022) Test 0.756 0.754 0.759
Proposed-SSHL Encoder-Decoder 0.741 0.807 0.685 MDFS (proposed) Test 0.764 0.712 0.823
MDEFS (proposed) Train 0.816 0.831 0.801

Table 7

Effect of using different combinations of domain generalization techniques on the

mitosis candidate segmentation model’s performance.
Ex. Pretraining SN SA F1 Rec Prc
1 ImageNet X X 0.722 0.760 0.687
2 ImageNet X v 0.765 0.807 0.728
3 ImageNet v X 0.754 0.824 0.695
4 ImageNet v v 0.773 0.805 0.744
5 SSHL X X 0.741 0.807 0.685
6 SSHL X v 0.758 0.788 0.730
7 SSHL v X 0.748 0.775 0.724
8 SSHL v v 0.762 0.805 0.724

4.6.2. Effect of domain generalization techniques

We examine three different techniques to tackle the domain-shift
issue in histology images: stain normalization (SN), stain augmentation
(SA), and encoder pre-training (see Section 3.4). Firstly, we test our
candidate segmentation model pretrained with various self-supervised
learning methods on the MIDOG21 dataset. The methods include Im-
ageNet, SImCLR (Chen et al., 2020), and SCL (Khosla et al., 2020)
for the model encoder, and the proposed SSHL method for both the
encoder and decoder. No other domain generalization techniques are
used here to ensure optimal pretraining method selection. As shown in
Table 6, SSHL notably outperforms both SimCLR and SCL pretraining
algorithms by 2.5%, achieving an F1 of 0.741. Thus, we only consider
the SSHL pretraining method in subsequent domain generalization
investigation experiments (ImageNet weights are also included as the
standard approach).

In Table 7, we present the effect of SN, SA, and pretraining tech-
niques on the mitosis candidate segmentation task. As expected, with-
out using any of the proposed techniques, the model performs the worst
(Ex.1 with F1 of 0.722). With ImageNet pretrained weights, the model
performance consistently improved with the addition of SN and SA. A
similar pattern was observed with SSHL pretraining, though SN and
SA had less impact on the final F1. Interestingly, when combined with
SN and SA, ImageNet pretrained weights outperformed the SSHL pre-
trained model (Ex.4 with F1 of 0.773). These results suggest that SSL
techniques are beneficial for introducing domain-invariance to mitotic
segmentation models. However, when combined with SN and SA tech-
niques, they might be unnecessary. Thus, we used ImageNet weights for
encoder pretraining and a combination of SN and SA for training and
inference on benchmark datasets. Note that SN was excluded during
WSI inference to reduce computational load.

4.7. Adaptation to other tissues and species

The diversity of tissue types and species in the MIDOG22 dataset
provides an ideal test bed for the generalization capability of our MDFS
algorithm. However, the MIDOG22 challenge’s main track prohibits
the use of external resources, precluding the integration of NuClick
for mitosis mask generation as discussed in Section 3.2.2. Instead,
we employ Point-EUNet (utilizing dilated points as mitosis GT, see
Section 4.6.1) within the ‘Detecting Fast’ system, which can be trained
using the original point annotation. Furthermore, unlike the MIDOG21
challenge, we opted not to use stain normalization in MIDOG22. We
conducted cross-validation experiments on the MIDOG22 training set,
and to evaluate MDFS on the external MIDOG22 test set, we submitted

11

a This is MIDOG reference algorithm which did not compete in the challenge.

our algorithm to the challenge. Table 8 reports our cross-validation
results and the top-performing methods on the MIDOG22 test set.
Remarkably, MDFS secured the 1st rank on the final test leaderboard.?

Considering that the MIDOG22 test set comprises 100 cases from 10
different unseen tumor types (human melanoma, human astrocytoma,
human bladder carcinoma, canine breast cancer, canine cutaneous
mast cell tumor, human meningioma, human colon carcinoma, canine
hemangiosarcoma, feline soft tissue sarcoma, and feline lymphoma),
the high F1 score of 0.764 achieved by the MDFS method demon-
strates its robustness and adaptability to domain shifts caused by
varying scanners, labs, species, and tumor types. Notably, MDFS outper-
formed SOTA attention-based transformer models (Kotte et al., 2022;
Saipradeep et al., 2022), reaffirming the superiority of our proposed
method based on mitosis segmentation over standard bounding box
detection models for mitosis detection.

4.8. Large-scale mitosis detection on TCGA WSIs

To showcase the capability of our proposed method for the efficient
processing of WSIs, we processed the entire breast cohort of the TCGA
dataset (TCGA-BRCA) with an improved version of the MIDOG22 model
(see Appendix B). Over 620K mitotic figures were detected in 1124
WSIs, with the candidate segmentation and refinement parts of the
algorithm requiring around 2.5 (+6) min and 6.4 (+4.5) s, respectively.
Thus, each slide was processed in under 3 min. Given its high efficiency
in processing large WSIs and its robustness to scanner-induced vari-
ations, our algorithm is a viable tool for research uses that demand
WSI-level mitosis detection.

We have made the output of our mitosis detection algorithm pub-
licly accessible for research purposes at https://zenodo.org/records/
10245707 to facilitate mitosis-related down-stream tasks, such as
biomarker discovery and survival prediction for breast cancer. The
‘TCGA-BRCA Mitosis Dataset’ also includes mitotic hotspot regions,
hotspot mitotic counts, and hotspot mitotic scores. For more details,
refer to Appendix B. While strong correlations between pathologist and
algorithmic mitotic counts were observed in hotspot regions of 757
cases (r = 0.8, p<0.001), we acknowledge the necessity to explicitly
mention that all detections were not reviewed nor revised, cautioning
users regarding downstream analysis due to potential errors inherent
in the dataset.

5. Discussion

Various algorithms for automatic mitosis detection have been pro-
posed (Mathew et al., 2021), with many aimed at enhancing detection
in mitotic hotspots or regions of interest (ROIs). This paper outlines
an efficient, generalizable algorithm for mitosis detection, designed to
be resilient to domain shifts caused by scanner variability, cancer types,
or species. This two-stage algorithm initially segments lower-resolution

2 MIDOG 2022 challenge leaderboard is accessible at https://midog2022.
grand-challenge.org/.
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mitosis candidates and then refines them at a higher resolution for
improved speed and accuracy. We introduce a new metric, mitotic score
error M E, to better assess the performance of mitotic score estimation
methods.

5.1. Generalizability of MDFS

Our proposed method’s robustness is evaluated through external
validation experiments (Sections 4.3.1, 4.3.2 and 4.7). These trials
highlight the MDFS’s adaptability to unseen domains, including those
arising from variations in staining, scanner use, tissue types, case
species, or annotation protocols. Our method achieved first place in
both the MIDOG2021 and MIDOG22 grand challenges on mitosis do-
main generalization and outperformed all other techniques on the
TUPAC-mitosis challenge leaderboard.

Notably, the MIDOG21 dataset’s test set comprises images from
four different scanners. Our algorithm achieves an F1 of 0.837 when
tested on the ‘Scanner A’ subset (Fig. 8)—a 5% improvement over
internal cross-validation experiments. We attribute this high general-
izability to the use of domain generalization techniques (Section 3.4)
and model design. Future research should continue utilizing encoder—
decoder models and stain-augmentation techniques to combat domain
shifts in mitosis detection. While we did not observe any added value
in pretraining the segmentation model for our current work, it could
potentially prove beneficial when handling small-scale datasets. Fur-
thermore, despite potential advantages, we caution against the use of
stain normalization due to potential inconsistencies, particularly when
original images contain staining components other than Hematoxylin
and Eosin Vu et al. (2022).

5.2. Efficiency of MDFS

The proposed algorithm outperforms other region-proposal-based
techniques in processing 2 mm? sample images (Section 4.3.1). This
efficiency owes to the method’s dual detection systems. The ‘Detect-
ing Fast’ system quickly identifies potential mitotic figures in down-
scaled images, while the ‘Detecting Slow’ system accurately classifies
candidates using full-resolution patches. Despite the initial loss of high-
resolution information due to down-sampling, our two-step approach
regains much of the lost performance (Table 1). The ‘Detecting Slow’
system can improve the F1 score by 3%-5%, while minimally impacting
computational cost (Section 4.4).

As seen in Table 1, the proposed method maintains mitosis detection
accuracy using down-scaled images in the ‘Detecting Fast’ system, while
significantly enhancing speed. With a down-sampling scale of 0.75, the
proposed method sustains an F1 value above 0.78, reducing 2 mm? ROI
processing time from 2.8 s to 1.53 s. On average, WSIs are processed in
about 3 min. This demonstrates the MDFS system’s practical efficiency
and the generalizability of EUNet with lower-magnification images.
Contrarily, methods such as EfficientDet markedly deteriorate in perfor-
mance at lower resolutions and show sensitivity to threshold selection
(as illustrated in Fig. A.1 of Appendix A), rendering it ill-suited for
employment in the ‘Detecting Fast’ system.

5.3. Limitations and future work

As mentioned in Section 4.5, one of the main drawbacks of the
MDFS method is missing very small/faint or inflammatory-like mitoses.
It appears, however, many of the false negatives (FNs) in Fig. 9 are
mislabeled mimickers, not actual mitoses. For example, dissolved nu-
clear materials in the samples of bottom row in Fig. 9a exhibit traits
of dead or dying cells, which are called Karyorrhectic cells (Ibrahim
et al.,, 2022). In general, Ibrahim et al. (2022) proposed guidelines
on recognizing common mimickers in breast cancer listed as apop-
totic bodies, tissue artifact (pigmentation), hyperchromatic malignant

12

Medical Image Analysis 94 (2024) 103132

cells, foamy macrophages, karyorrhectic cells, and out-of-focus lympho-
cytes/fibroblast cells which are challenging for both pathologists and Al
to be distinguished.

An additional issue is the considerable number of true positive
candidates identified by the ‘Detecting Fast’ system pruned during
refinement. Thus, a highly sensitive and specific classifier is necessary.
Ensembling multiple classifiers has shown efficacy in enhancing clas-
sifier performance (Liang et al., 2021; Kotte et al., 2022), although
at the cost of computational power and decreased algorithmic speed.
Essentially, for optimal functionality of ‘Detecting Fast and Slow’, both
segmentation and classification components must perform well.

A crucial facet of automated mitosis detection is determining its
potential to enhance survival prediction, as patient prognosis is ulti-
mately the aim of mitotic counting in slides. Given that our algorithm
can perform on par with experienced pathologists on mitosis detection
in ROIs (Aubreville et al., 2022b), Al-assisted mitotic scoring is antici-
pated to improve survival prediction accuracy. Nonetheless, this topic
and evaluation of mitosis detection accuracy on the WSI level have not
been probed yet and exceed the current study’s scope. Further, it would
be insightful to scrutinize the performance of our proposed mitosis
detection algorithm across other cancer types. Automation of mitosis
detection in such instances could contribute to developing objective
prognostic measures for patients.

6. Conclusions

This paper presented a two-stage algorithm for effective mitosis de-
tection in breast histology images and WSIs, involving an initial ‘Detect-
ing Fast’ phase to segment mitotic candidates, followed by a ‘Detecting
Slow’ phase to refine these candidates using a deeper CNN. We intro-
duced the EUNet model for mitosis segmentation and utilized Efficient-
Net (Tan and Le, 2019) for candidate classification. We demonstrated
that the ‘Detecting Fast’ phase could employ lower-resolution images
to substantially boost algorithm speed without compromising accu-
racy. Our investigation into the effect of three domain generalization
techniques on the mitosis detection task indicated that a combination
of stain normalization and augmentation techniques yielded optimal
results. Self-supervised pretraining of the encoder model, even with
a novel preprocessing method capable of joint encoder and decoder
pretraining, was found to be unnecessary with our method and mid-
to large-scale datasets. Our approach outperformed all other SOTA
methods for mitosis detection on MIDOG and TUPAC datasets, known
for significant domain shifts. This performance advantage is evident in
terms of both traditional detection metrics and the recently proposed
mitosis score error, M E, which assesses the mitosis detection model’s
performance on mitosis score estimation in hotspot regions.

Our algorithm secured first places in the MIDOG 2021 and 2022
mitosis detection challenges and outperformed all other methods on the
TUPAC dataset. Furthermore, we processed 1124 WSIs of the TCGA-
BRCA cohort using our efficient method and generated over 620 K
mitotic figures. This dataset, along with the mitosis masks produced for
the TUPAC and MIDOG datasets, is made publicly available to aid in
the development of mitosis detection models and mitosis-based survival
analysis for breast cancer.
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Fig. A.1. Threshold analysis experiment on MIDOG training set using EUNet (a) or EfficientDet (b) as the candidate detector in the proposed two-stage detection pipeline. Recall,
Precision, and F1 values are highlighted against various selections of segmentation (detection) and classification thresholds during the post-processing step. Black and gray contours

show peak performance region.
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Appendix A. Threshold selection

The post-processing design is impactful on the final output and
should be carefully designed. The simple segmentation and classifi-
cation design of our model allows the incorporation of a fast post-
processing method (Section 3.2.4). There are two main parameters in
the proposed post-processing and the entire prediction pipeline, which
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are segmentation and classification thresholds. We set these parameters
by conducting a grid search on a range of thresholds for both tasks.
In particular, we sweep the segmentation threshold between 0 and
0.85, and for each segmentation threshold, we test a range of classi-
fication thresholds from 0 to 0.95 (both inclusive). For each threshold
configuration, we calculate the F1, Recall, and Precision of the results
against the GT and plot the results as surface maps in Fig. A.1. These
experiments are done using an image scale of 0.75 in the first stage of
detection. The best-performing point is chosen based on the F1 map,
where a good combination of recall and precision leads to high values
of the F1.

Through careful examination of the heatmaps Fig. A.1 one can
observe the complex trade-offs between sensitivity and specificity in
the initial stage of our two-stage detection process. High detection
thresholds in the first stage yield higher specificity but lower sensitivity,
resulting in fewer but more accurate candidate detections. However,
this stringent selection might miss some true positive cases. By contrast,
lower detection thresholds increase sensitivity, at the risk of passing
more false positives to the subsequent classification stage. To compen-
sate for the lower specificity in the first stage, the second stage employs
a range of classification thresholds. With the help of the classification
heatmap, it is possible to select an optimal classification threshold
that best balances precision and recall, effectively refining the set of
candidates passed on from the first stage. This allows us to maintain
an excellent F1 score, despite the trade-offs made in the initial stage.
Therefore, by appropriately tuning the thresholds in both stages, we can
achieve efficient and robust performance in mitotic figure detection.

A benefit of our proposed method is that the resulting F1 map
(shown in Fig. A.1a) is almost flat for all spans of segmentation and
classification thresholds and this shows the robustness of the proposed
method against threshold selection. In particular, the peak performance
(where the F1 is higher than 0.78 and highlighted by a black contour
in Fig. A.1a) can be achieved by selecting the segmentation threshold
in the range of [0.3,0.45] and the classification threshold anywhere
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Fig. A.2. Analysis of ‘Detecting Slow’ and ‘MDFS’ run times (in seconds) over varying
detection thresholds. The upper plot shows the average classification time for ‘Detecting
Slow’, with shading indicating standard deviation. The lower plot juxtaposes running
times for both systems. The x-axis is similar in both plots and represents thresholds
used in the ‘Detecting Fast’ system.

between [0.1,0.4] which is indicative of the robustness of our method
against threshold selection. That said, our approach does allow for
flexibility. If a user seeks to optimize for sensitivity (at the cost of pre-
cision), they can select lower thresholds. Conversely, if precision is the
priority (at the cost of sensitivity), higher thresholds can be selected.
Our method’s distinctive dual advantage of robustness and flexibility
in threshold selection, demonstrated by consistent performance across
varying thresholds yet allowing adjustments for a desired balance of
sensitivity and precision, underscores its potential to be a practical tool
for mitotic figure detection. Please note that this figure is related to
the experiment where we used stain-normalized images and trained our
models with the stain-augmentation technique. For other experiments
(using different image scales in the first stage of MDFS), these maps
might be slightly different but it has been seen that the landscape of
F1 values in relation to segmentation and classification thresholds is
almost always flat with different variations of our model. Nonetheless,
for each cross-validation experiment, we repeated a similar thresh-
old selection procedure to select the segmentation and classification
thresholds that best suit the configuration of the method to make fair
comparisons in the paper.

On the other hand, we repeated similar experiments for the pipeline
when ‘EfficientDet’ was used as candidate detection in the first stage
of MDFS. The new results depicted in Fig. A.1b unequivocally reveal
that utilizing EfficientDet as a candidate detector not only dimin-
ishes the F1 score (from 0.87 for EUNet+EfficientNet to 0.62 for
EfficientDet+EfficientNet) but also restricts the optimal performance
range concerning threshold selection for each stage. Specifically, only a
detection threshold of 0.2 and a classification threshold between 0 and
0.25 yield the best results.

In addition, to address concerns about computational efficiency,
we have plotted the runtime impact of varying detection thresholds
on the classification stage and the whole MDFS pipeline in Fig. A.2.
This has been done using full-resolution images in the first stage of
the pipeline. Our findings suggest that while the detection threshold
significantly influences the number of candidates presented to the clas-
sification stage, the added computational load does not substantially
affect overall runtime. This observation underscores the efficiency of
our two-stage approach, even when adjusting for higher sensitivity in
the initial detection phase.

Appendix B. Details of TCGA-BRCA mitosis dataset
The WSI processing pipeline is explained in Section 3.5. In our

processing of the TCGA-BRCA dataset, we relied on the TIAToolbox
software, which effectively manages image scaling. We extracted tiles

14

Medical Image Analysis 94 (2024) 103132

from WSIs at a resolution of 0.25 mpp, equivalent to roughly a 40x
magnification, then fed them into the MDFS pipeline which down-
scales the image tile by a factor of 0.75 in the ‘Detecting Fast’ system.
When encountering WSIs scanned at higher magnifications, such as
80x, TIAToolbox performed the necessary downscaling of tiles to match
our desired resolution. As for the 20x slides, we ensured high-quality
detection by utilizing segmentation and classification models trained
on half-scaled (20x images).

In order to deal with the large variability of mitoses and usual
artifacts in WSIs (such as pen markings and stain residues), we fine-
tuned the MIDOG22 classifier model on a manually curated dataset of
common artifacts in histopathology. Small (128 x 128 pixels) artifact
patches were extracted from a selection of TCGA and an in-house
dataset to form a collection of 22,600 artifact images. Doing this has
made our ‘Detecting Slow’ system more robust against obvious artifacts
in WSIs.

In total, our released ‘TCGA-BRCA Mitosis Dataset’ comprises 1124
mitosis detection files in GeoJSON format containing more than 0.67
million candidates (initially detected by the segmentation model), of
which 622,528 are confirmed to be mitoses by the ‘Detecting Slow’
classifier. We have released both mitosis figures and proxy figures
(instances that were pruned out by the ‘Detecting Slow’ system but
had a mid-range probability of being mitosis) to further aid in de-
veloping better mitosis detection models and downstream analysis in
the future. For each WSI in the dataset, we release the candidates’
centroid, bounding box, hotspot location, hotspot mitotic count, and
hotspot mitotic score. This dataset can be found at https://zenodo.
org/records/10245707. It should be noted that we did not conduct a
comprehensive review of all mitotic figures within each WSI, and we
do not purport these to be free of errors. Nonetheless, a pathologist
examined the resultant hotspot regions of interest from 757 WSIs within
the TCGA-BRCA Mitosis Dataset where we found strong correlations
between pathologist and MDFS mitotic counts (r = 0.8, p<0.001).
Furthermore, MDFS-derived mitosis scores are shown to be as prognos-
tic as pathologist-assigned mitosis scores (Ibrahim et al., 2024). This
examination was also aimed at verifying the quality of the selections,
ensuring excessive false detections or artifacts did not primarily drive
them and were in a plausible location in the tumor landscape.
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