6 research outputs found

    Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts

    No full text
    Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications

    Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of <i>Solanum virginianum</i> L. Callus Culture Extracts

    No full text
    Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications

    Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of <i>Moringa oleifera</i>

    No full text
    Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC ”M) and FRAP (365.37 TEAC ”M), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 ”g/g DW), neochlorogenic acid (998.38 ”g/g DW), quercetin (959.92 ”g/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera

    A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy

    Get PDF
    Cancer is one of the foremost causes of death worldwide. Cancer develops because of mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled division and proliferation of cells. Various drugs have been used to treat cancer thus far; however, conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost effective, safe, and biocompatible and have got substantial attention from researchers around the globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer; among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au, Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the future prospects and opportunities of nano-therapeutics, are also highlighted

    Enhancement in the production of phenolic compounds from Fagonia indica callus cultures via Fusarium oxysporum triggered elicitation

    No full text
    Fagonia indica Burm.f. (1768) is a medicinally important plant showing diverse pharmaceutical benefits. It is renowned for its ability to biosynthesize several anticancer and anti-inflammatory metabolites. For the eco-friendly and sustainable synthesis of phytochemicals and plant biomass, a biotechnological technique, “elicitation,” is a highly effective method in various in vitro cultures. The present study includes using various concentrations of Fusarium oxysporum Schlecht. as an elicitor in callus cultures of Fagonia indica. The main goal was to achieve enhancement in biomass production and secondary metabolism. The findings demonstrated that maximum biomass production (FW: 167.42 ± 3.99 g per 100 mL; DW: 12.53 ± 1.04 g per 100 mL) was observed at 50 mg L−1 of Fusarium oxysporum as compared to the control. Secondary metabolites showed immense production (phenolic content (9.68 ± 0.23 ”g mg−1); flavonoid content (2.814808 ± 0.11 ”g mg−1)) in callus cultures treated with 10 mg L−1 of Fusarium oxysporum as compared with control. Moreover, the cultures possessed the highest antioxidant capacity, as determined by 2,2â€Č-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS‱+) radical cation based assay and α, α-diphenyl-ÎČ-picrylhydrazyl (DPPH) free radical scavenging assay, ((821.51 ± 3.20 ”mol TEAC per mg DW of ABTS inhibition) (91% ± 1.45 of DPPH inhibition)) at 10 mg L−1 concentration of Fusarium oxysporum, and the maximum ferric ion reducing activity (219.29 ± 2.36 ”mol TEAC per mg DW) was noticed at 1.0 mg L−1 concentration of F. oxysporum. Fagonia indica cultures also indicated the highest percent inhibition against cyclooxygenases (COX-1: 51.93% ± 1.74 and COX-2: 40.57% ± 1.99), lipoxygenase (15-LOX: 65.72% ± 1.44), and phospholipase A2 (sPLA2: 49.29% ± 1.75), when treated with different concentrations of F. oxysporum. HPLC analyses showed a significant accumulation of pharmacologically active components in the treated samples, with kaempferol (1245.56 mg g−1) and myricetin (1139.63 mg g−1) as the most accumulated compounds in the cultures with 10.0 mg L−1 concentration of Fusarium in contrast to the control. These findings revealed that in callus cultures of F. indica, F. oxysporum could boost biomass accumulation and secondary metabolite production
    corecore