216 research outputs found

    Developmental biology and prey preference of Diomus notescens Blackburn (Coleoptera: Coccinellidae): A predator of Aphis gossypii Glover (Hemiptera: Aphididae)

    Get PDF
    The minute two-spotted ladybeetle, Diomus notescens Blackburn is a common predator of aphids and other pests in Australian agricultural crops, however little is known about the biology of D. notescens. The aim of this study was to provide information on the life cycle of this predator and improve our understanding of its biological control potential, particularly against one of the major pests of cotton, Aphis gossypii Glover. In laboratory experiments, juvenile development, prey consumption, as well as adult lifespan and fecundity were studied. Results from this study revealed that D. notescens could successfully complete development on A. gossypii, which at 25 °C required 21 days and during this period they each consume 129 ± 5.2 aphids. At 25 °C adult lifespan was 77 ± 9.6 days, with a mean daily prey consumption of 28 ± 1.8 aphids and a mean daily fecundity of 8 ± 0.5 eggs. Net reproductive rate was estimated as 187 ± 25.1 females and the intrinsic rate of increase was estimated as 0.14. Juvenile development was recorded at four constant temperatures (15, 21, 26 and 27 °C) and using a linear model, the lower threshold for D. notescens development was estimated to be 10 ± 0.6 °C with 285 ± 4.7 degree days required to complete development. A prey choice experiment studying predation rates revealed a strong preference for A. gossypii nymphs compared to Bemisia tabaci Gennadius eggs

    Helicoverpa armigera preference and performance on three cultivars of short-duration pigeonpea (Cajanus cajan): the importance of whole plant assays

    Get PDF
    BACKGROUND Helicoverpa armigera is a major pest of pigeonpea (Cajanus cajan). Efforts to develop pigeonpea varieties resistant to H. armigera attack have been met with limited success, despite reports of high levels of resistance to H. armigera in wild relatives of pigeonpea and reports of low to moderate levels of resistance in cultivated varieties. Here we examined H. armigera oviposition preference and larval performance on whole plants of three cultivars of short-duration pigeonpea: a susceptible control (ICPL 87) and two cultivars with purported host–plant resistance (ICPL 86012 and ICPL 88039). RESULTS In our no-choice oviposition experiment, H. armigera laid similar numbers of eggs on all three cultivars tested, but under choice conditions moths laid slightly more eggs on ICPL 88039. Larval growth and development were affected by cultivar, and larvae grew to the largest size (weight) and developed fastest on ICPL 86012. Moths laid most of their eggs on floral structures, sites where subsequent early instar larvae overwhelmingly fed. Experimentally placing neonate larvae at different locations on plants demonstrated that larvae placed on flowers experienced greater survival, faster development, and greater weight gain than those placed on leaves. The type and density of trichomes (a potential resistance trait) differed among cultivars and plant structures, but larvae selected to feed at sites where trichomes were absent. CONCLUSION Future work examining host–plant resistance against H. armigera should incorporate the behavioural preference of moths and larvae in experiments using whole plants as opposed to bioassays of excised plant parts in Petri dishes. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions

    Get PDF
    The relative thermal requirements and tolerances of hymenopteran parasitoids and their hosts were investigated based on published data. The optimal temperature (Topt) for development of parasitoids was significantly lower than that for their hosts. Given the limited plasticity of insect responses to high temperatures and the proximity of Topt to critical thermal maxima, this suggests that host-parasitoid interactions could be negatively affected by increasing global temperatures. A modelling study of the interactions between the diamondback moth and its parasitoid Diadegma semiclausum in Australia indicated that predicted temperature increases will have a greater negative impact on the distribution of the parasitoid than on its host and that they could lead to its exclusion from some agricultural regions where it is currently important

    Australian processionary caterpillars, Ochrogaster lunifer Herrich‐Schäffer (Lepidoptera: Notodontidae), comprise cryptic species

    Get PDF
    The bag shelter moth, Ochrogaster lunifer Herrich-Schäffer, 1855 (Thaumetopoeinae), is abundant and widespread throughout Australia where its larvae have been reported to feed mostly on Acacia and eucalypts. The larvae, known as processionary caterpillars, build silken nests on their host plants either on the ground at the base of the plant (Acacia) or above ground on the trunk or among the canopy (Acacia and eucalypts). The caterpillars are medically important in that they shed tiny setae that can cause dermatitis and other health problems in humans and other mammals, including amnionitis and foetal loss in horses. Despite reports of behavioural, ecological and morphological differences between ground and canopy nesters, caterpillars of all nest types and hosts are currently considered to belong to one species. Here, we use DNA sequence data from the mitochondrial and nuclear genomes of caterpillars taken from different nest types in eastern Australia to determine whether there is evidence for there being more than one species. We find significant genetic divergence between caterpillars from different nest types despite occurrence in sympatry at multiple sites, indicative of a lack of gene flow and the presence of at least two reproductively isolated species. Given the range of hosts and nest locations within hosts throughout Australia, further sampling is needed to determine just how many species there are under the current concept of O.\ua0lunifer
    corecore