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Highlights 

 Evidence for fundamental differences in the responses of parasitoids and their hosts 
to temperature 

 In the context of increasing global temperatures differences will favor hosts over 
parasitoids 

 Predicted climate change could exclude parasitoids from locations where they 
currently persist 

 Further research on effects of increasing temperatures on a wider range of fitness 
traits required 
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Abstract 
 

The relative thermal requirements and tolerances of hymenopteran parasitoids and their 

hosts were investigated based on published data. The optimal temperature (Topt) for 

development of parasitoids was significantly lower than that for their hosts. Given the 

limited plasticity of insect responses to high temperatures and the proximity of Topt to 

critical thermal maxima, this suggests that host-parasitoid interactions could be negatively 

affected by increasing global temperatures. A modelling study of the interactions between 

the diamondback moth and its parasitoid Diadegma semiclausum in Australia indicated that 

predicted temperature increases will have a greater negative impact on the distribution of 

the parasitoid than on its host and that they could lead to its exclusion from some 

agricultural regions where it is currently important. 
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Introduction 

Elevated concentrations of greenhouse gases in the atmosphere are leading to measureable 

increases in temperatures at the Earth’s surface. This is likely to result in more extreme 

variation in local temperatures and increased frequencies and durations of heatwaves, 

periods of drought and extreme precipitation events. Climate change imperils global food 

security by compromising agricultural production, contributing to elevated food prices and 

increasing the risks of hunger and malnutrition [1]. Together, current agricultural practices 

and the conversion of land for agricultural production are responsible for approximately 

30% of greenhouse gas emissions [2], exacerbating the problems that climate change poses 

to agriculture and leading to calls for a clear foundation for the sustainable intensification of 

agricultural practices [2,3]. The prevailing effects of climate change have already caused 

organismal range shifts and population changes, and they are increasingly considered to 

pose a risk to species extinctions [4]. 

The biological control of pests of food crops is a key ecosystem service that 

underpins sustainable approaches to their management, thereby providing significant fiscal 

and environmental benefits [5]. Classical biological control, the introduction of a natural 

enemy of an injurious organism from its region of origin into the region invaded by the pest, 

has its modern foundation in the establishment of Rodolia cardinalis and Cryptochaetum 

iceryae in Californian citrus groves to control the invasive scale insect, Icerya purchasi. Since 

then many successful classical biological control programs have been implemented [5], 

notably the control of cassava mealybug (Phenococcus manihoti) in sub-Sharan Africa by 

introduction of the encyrtid parasitoid Epidinocarsis lopezi) [6] and management of the 

diamondback moth (Plutella xylostella) in many locations by introduction of one or more 

members of a parasitoid complex [7]. The impacts of climate change on host-parasitoid 

interactions, whether natural enemies have been deliberately introduced into new regions 

or whether the agents are indigenous and biological control is being supported by 

conservation practices, will be modulated by direct effects on the organisms involved (e.g. 

through effects on physiology and metabolism), the responses of those organisms and 

subsequent tri-trophic interactions. Parasitoids, which represent the third trophic level, are 

likely to be significantly affected by climate induced perturbations to these systems and 

understanding what these effects might be is of critical importance. 
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Thermal biology and host-parasitoid interactions  

 Insects are ectotherms and their body temperatures reflect the temperatures that 

they experience in their local environment. Insect metabolism, growth, movement and 

reproduction are temperature-dependent and we can begin to understand the likely 

impacts of climate change on host-parasitoid interactions by considering how temperature 

might affect relative fitness. By measuring a surrogate for fitness or “performance” (e.g. 

development rate), the response of insects across a range of temperatures can be estimated 

and used to construct Thermal Performance Curves (TPCs) [8**]. Typically, such curves 

increase gradually with temperature from the critical thermal minimum (CTmin, lower 

thermal limit of performance) to a maximum (Topt, temperature at which performance is 

maximized) and then decline rapidly as the critical thermal maximum (CTmax, upper thermal 

limit of performance) is approached [8**]. Interpretation of TPCs and the implications for 

how organisms might be expected to respond to changes in temperature need to be 

exercised with care as responses to temperature of a given species typically vary between 

different ontongenic stages, fitness traits and individuals that have been held at different 

temperatures prior to the start of studies [8**,9**]. Nevertheless, provided that their 

constraints are appreciated and if they are constructed from appropriate data, TPCs can 

provide significant insight into the thermal biology of ectotherms and how they might 

respond to increasing global temperatures.  

Much of the research that has investigated the responses of parasitoids to extreme 

temperatures has focused on lower thermal limits, with more recent studies considering 

how warmer conditions could lead to the decoupling of phenological synchrony between 

parasitoids and their hosts based on differences between their lower thermal limits [10*]. 

Differences between the TPCs of parasitoids and their hosts will result in different responses 

to given temperature conditions, resulting in changed relative development rates that will 

affect their population biology. If the critical parameters of the TPC for a parasitoid are 

lower (to the left) than those of the corresponding TPC for its host then increased 

temperatures are likely to have a greater impact on the parasitoid than on its host. The 

upper thermal limits for insects tend to vary much less than the lower thermal limits in 

response to acclimation or acclimatization, they are restricted to a narrow range that is 

typically close to Topt and that their evolution appears to be tightly constrained [9**]. 

Consequently, rising global temperatures are likely to pose significant problems for insects. 
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In host-parasitoid interactions the relative nature of host and parasitoid TPCs will have 

profound consequences for the outcomes of these relationships.  

We searched the published literature for reports of studies that investigated the 

thermal performance of parasitoids developing in their hosts (Table 1). Studies were 

selected if they reported the basic metrics of parasitoid TPCs (CTmin, Topt and CTmax) based on 

development rate and either also reported these metrics for the respective host, or involved 

a host species for which these metrics had been determined independently (Table 1). In 

addition to development, 14 of the 17 studies (82%) reported on parasitoid survival to the 

adult stage, 65% on adult parasitoid longevity, 82% on parasitoid sex ratios. Only 41% of the 

studies measured parasitoid fecundity and 29% estimates rates of host parasitism (data not 

shown). When critical values from TPCs based on development rates were compared 

between parasitoids and their hosts, no statistical difference was detected between 

estimates of the host and parasitoid CTmin (mean difference (SE)=0.09 (1.13); t16=0.078, 

P=0.938), CTmax (mean difference (SE)= 2.18 (1.09); t16=2.017, P=0.061), tolerance range 

(difference between CTmax and CTmin) (mean difference (SE)= 2.10 (1.22); t16=1.715, 

P=0.106) or Thermal Safety Margin (TSM; difference between Topt and CTmax) (mean 

difference (SE)= 1.3 (0.72); t16=1.796, P=0.092) (Table 1, Figure 1). However, the 

estimated Topt for parasitoids was consistently significantly lower than the estimated Topt for 

their hosts (mean difference (SE) =3.49 (1.36); t16=2.564, P=0.021) (Table 1, Figure 1). This 

suggests that in general, parasitoids might be more susceptible to elevated temperatures 

than their hosts. This is supported by reports of changed behaviors in parasitized hosts that 

lead to reduced [11] and increased [12] exposure to high temperatures that result in 

increased and decreased parasitoid survival respectively. 

Studies investigating the effects of fluctuating temperatures on parasitoids are rare 

and none were included in our analysis. In terrestrial environments temperature fluctuates 

daily and the magnitude of the diurnal oscillations vary between seasons and different 

habitats. The asymmetrical nature of TPCs (Figure 1) mean that changes in temperature will 

produce different effects, depending on whether or not the variation encompasses Topt. As 

Topt is typically close to CTmax, small increases in temperature can result in this threshold 

being exceeded; at temperatures below Topt the rate of change is lower (Figure 1) and larger 

temperature changes can be experienced before critical lower thresholds are crossed 
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[13**]. Thus, at temperatures below Topt insects developing under fluctuating temperatures 

will develop more quickly than insects developing under constant temperatures with an 

equivalent mean; the effect is amplified by greater temperature variation. At temperatures 

above Topt the opposite occurs and temperature oscillations that result in Topt being 

exceeded yield diminished development rates during that part of the temperature cycle. 

Consequently, studies conducted at constant and fluctuating temperatures will have 

different outcomes and the magnitude of this difference is dependent on the amplitude of 

the temperature changes. TPCs must be constructed using biologically meaningful data if 

they are to be of use in investigations of the impact of environmental change on organisms 

[8**]. We used the only readily available data, development rate, as a proxy for fitness to 

investigate the relative effects of temperature on parasitoids and their hosts. Other fitness 

traits are likely to be influenced differently and the precise manner in which these might be 

modulated by different fluctuating temperature regimes is unknown. Further, most of the 

studies investigated do not report on acclimation of organisms prior to the start of 

experiments, the optimality of the diets used is unknown and in many of our comparisons 

studies on hosts and parasitoids were conducted independently. Nevertheless, there is a 

clear suggestion that Topt for parasitoids is typically lower than Topt for their hosts and this 

warrants further investigation. 

 

Case study: modelling the effects of climate change on a host- parasitoid interaction 

Plutella xylostella is a global pest of Brassica crops that has been successfully managed in 

many regions by classical biological control with the hymenopteran larval-pupal parasitoid, 

Diadegma semiclausum [7]. Topt for the parasitoid is estimated to be significantly lower than 

that for its host [14*] and integration of host and parasitoid CLIMEX models predict that 

projected climatic conditions by 2070 are likely lead to reduced biological control of the pest 

throughout much of its established range [14*]. Consistent with observations, the models 

predict that current conditions for the parasitoid are least conducive across northern 

Australia (Figure 2a, dark red regions) but that these improve in southeast Queensland 

(Figure 2a, Zone A) and improve further still through New South Wales and into Victoria 

(Figure 2a, Zone B). In southern Victoria, southern South Australia, Tasmania and south west 

Western Australia the models indicate that current conditions are more suitable for D. 

semiclausum than for its host (Figure 2a, blue regions).  By 2070, conditions in large areas of 
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central Australia are likely to be unsuitable for P. xylostella (Figure 2b), however, conditions 

in south eastern Queensland and northern New South Wales (Figure 2b, Zone A) are 

predicted to favour the pest over its parasitoid and the projected higher temperatures in 

these regions could exclude this important biological control agent from regions where it is 

currently established and where it contributes important ecosystem services to agriculture 

[15]. Similarly, the suitability of conditions for the parasitoid are predicted to decline 

through southern regions of New South Wales, eastern Victoria and south western West 

Australia (Figure 2b, Zones B and C), but effects on the host-parasitoid interaction are likely 

to be limited in Tasmania (Figure 2b). 

 

Conclusions and future research  

TPCs provide a clear and recognized framework for the investigation of the effects of 

temperature on ectotherms. The analysis presented suggests that there may be general 

differences between the thermal requirements and tolerances of parasitoids and their hosts 

(Figure 1). In the context of increasing global temperatures these incongruities could 

contribute asymmetrical outcomes in host-parasitoid interactions, resulting in reduced 

parasitoid efficacy and the possible exclusion of parasitoids, but not their hosts, from 

locations in which they currently co-exist. The data set that was compiled is small, it only 

investigated one fitness trait (development rate) and it is limited to studies conducted at 

constant temperatures. Although some studies have investigated aspects of the thermal 

biology of parasitoids and their hosts simultaneously [29], the vast majority of studies 

reporting on the thermal requirements of parasitoids do so without reporting on similar 

studies for their hosts. This creates problems, as comparison of disparate studies introduces 

significant sources of error (e.g. possible genetic differences between study populations, 

differences between acclimation conditions, diet or methodological approaches) that can be 

confounding. Rigorous studies that use a wider range of fitness traits and explicitly seek to 

investigate the thermal requirements and tolerances of both organisms in specific host-

parasitoid interactions are required. This will allow investigation of how temperature 

manipulations can affect the outcome of these interactions so that predictions of the effects 

of climate change can be tested with greater precision. In interactions between P. xylostella 

and D. semiclausum, CLIMEX models based on developmental responses to temperature in 

the laboratory and known spatial and temporal distributions of both organisms indicate that 
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the parasitoid might indeed be more profoundly affected by predicted climate change in 

areas of Australia where it is currently of agricultural importance. Refining this approach 

and supporting it with the requisite empirical data, can provide a mechanism for 

investigating the likely effects of climate change on other specific host-parasitoid 

interactions, some of which are indispensable to current agriculture. 

 

Acknowledgements 

We thank Dr Sue Scull for forbearance and preparing and formatting the bibliography 

 

  



 9

References and recommended reading  

Papers of particular interest, published within the period of review, have been highlighted 

as:   

* of special interest   

** of outstanding interest  

1.  Parry M, Evans A, Rosegrant MW, Wheeler T: Climate change and hunger: 
Responding to the challenge. FAO: World Food Programme 2009, p108.  

2.  Godfray HCJ, Garnett T: Food security and sustainable intensification. Philosophical 
Transactions of the Royal Society B-Biological Sciences 2014, 369: 201220273  

3.  West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, 
Johnston M, MacDonald GK, Ray DK, et al.: Leverage points for improving global food 
security and the environment. Science 2014, 345:325-328. 

4.  Pacifici M, Foden WB, Visconti P, Watson JFM, Butchart SHM, Kovacs KM, Scheffers 
BR, Hole DG, Martin TG, Akcakaya HR, et al.: Assessing species vulnerability to 
climate change. Nature Climate Change 2015, 5:215-225. 

5.  Naranjo SE, Ellsworth PC, Frisvold GB: Economic Value of Biological Control in 
Integrated Pest Management of Managed Plant Systems. Annual Review of 
Entomology 2015, 60: 621-645. 

6.  Alene AD, Manyong VM, Coulibaly O: Responding to food supply shocks through 
global partnerships in technology development and transfer - The case of the IITA-
led biological control of cassava mealybug in Sub-Saharan Africa. Outlook on 
Agriculture 2006, 35:255-261. 

7.  Furlong MJ, Wright DJ, Dosdall LM: Diamondback Moth Ecology and Management: 
Problems, Progress, and Prospects. Annual Review of Entomology 2013, 58: 517-541. 

8.  Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong YW, 
Harley CDG, Marshall DJ, Helmuth BS, et al.: Can we predict ectotherm responses to 
climate change using thermal performance curves and body temperatures? Ecology 
Letters 2016, 19:1372-1385. 

** Critical analysis of the constraints of thermal performance curves in studies to 
understand the effects of temperature on the fitness of organisms. The development 
of a framework to facilitate the application of thermal physiology to investigate the 
biological implications of climate change. 

9.  Hoffmann AA, Chown SL, Clusella-Trullas S: Upper thermal limits in terrestrial 
ectotherms: how constrained are they? Functional Ecology 2013, 27:934-949. 

** Comprehensive review of the constraints that upper thermal limits place on terrestrial 
ectotherms. Selection and heritablity experiments suggest that upper thermal limits 
can not increase much and many terrestrial ectotherms have limited potential to 
change thermal limits in the context of predicted average temperature increases. 

10.  Hance T, van Baaren J, Vernon P, Boivin G: Impact of extreme temperatures on 
parasitoids in a climate change perspective. Annual Review of Entomology, 2007 
52:107-126.  

* Review of the impact of extreme temperatures host-parasitoid relationships. Coverage 
of implications of predicted climate change on host-parasitoid synchrony is especially 
detailed. 



 10 

11.  Reitz SR, Nettles WC: Regulation of Helicoverpa zea larval behavior by the parasitoid 
Eucelatoria bryani. Entomologia Experimentalis Et Applicata 1994, 71:33-39. 

12.  Karban R: Caterpillar basking behavior and nonlethal parasitism by tachinid flies. 
Journal of Insect Behavior 1998, 11:713-723. 

13.  Colinet H, Sinclair BJ, Vernon P, Renault D: Insects in fluctuating thermal 
environments. Annual Review of Entomology, 2015 60:123-140. 

** In depth explanation and discussion of the mechanisms underlying the different 
physiological effects of constant and fluctuating temperatures. Cogent arguments for 
the importance of including fluctuating temperatures in studies seeking to undertand 
or predict the performance of insects in the field.  

14.  Furlong MJ, Zalucki MP, Shabbir A, Adamson DC: Biological control of diamondback 
moth in a climate of change. Proceedings of Seventh International Workshop on 
Management of the Diamondback Moth and Other Crucifer Insect Pests. In The Mysore 
Journal of Agricultural Sciences 2017, 51: in press. 

* Description of the host and parasitoid CLIMEX models used to investigate the 
consequences of predicted global temperature increases on a specific host-parasitoid 
interaction. 

15.  Furlong MJ, Shi ZH, Liu YQ, Guo SJ, Lu YB, Liu SS, Zalucki MP: Experimental analysis of 
the influence of pest management practice on the efficacy of an endemic arthropod 
natural enemy complex of the diamondback moth. Journal of Economic Entomology 
2004, 97:1814-1827. 

16.  Andrade GS, Pratissoli D, Dalvi LP, Desneux N, dos Santos HJG: Performance of four 
Trichogramma species (Hymenoptera: Trichogrammatidae) as biocontrol agents of 
Heliothis virescens (Lepidoptera: Noctuidae) under various temperature regimes. 
Journal of Pest Science 2011, 84:313-320. 

17.  Gulzar A, Pickett B, Sayyed AH, Wright DJ: Effect of Temperature on the fitness of a 
Vip3A resistant population of Heliothis virescens (Lepidoptera: Noctuidae). Journal of 
Economic Entomology 2012, 105:964-970. 

18.  Jacas JA, Pena JE, Duncan RE, Ulmer BJ: Thermal requirements of Fidiobia dominica 
(Hymenoptera : Platygastridae) and Haeckeliania sperata (Hymenoptera : 
Trichogrammatidae), two exotic egg parasitoids of Diaprepes abbreviatus 
(Coleoptera : Curculionidae). Biocontrol 2008, 53:451-460. 

19.  Lapointe SL: Effect of temperature on egg development of Diaprepes abbreviatus 
(Coleoptera : Curculionidae). Florida Entomologist 2001, 84:298-299. 

20.  Ulmer BJ, Jacas JA, Pena JE, Duncan RE, Castillo J: Effect of temperature on life history 
of Aprostocetus vaquitarum (Hymenoptera : Eulophidae), an egg parasitoid of 
Diaprepes abbreviatus (Coleoptera : Curculionidae). Biological Control 2006, 39:19-
25. 

21.  Castillo J, Jacas JA, Pena JE, Ulmer BJ, Hall DG: Effect of temperature on life history of 
Quadrastichus haitiensis (Hymenoptera : Eulophidae), an endoparasitoid of 
Diaprepes abbreviatus (Coleoptera : Curculionidae). Biological Control 2006, 36:189-
196. 

22.  de Pedro L, Beitia F, Sabater-Munoz B, Asis JD, Tormos J: Effect of temperature on the 
developmental time, survival of immatures and adult longevity of Aganaspis daci 
(Hymenoptera: Figitidae), a natural enemy of Ceratitis capitata (Diptera: 
Tephritidae). Crop Protection 2016, 85:17-22. 



 11 

23.  Ricalde MP, Nava DE, Loeck AE, Donatti MG: Temperature-dependent development 
and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis 
capitata, from tropical, subtropical and temperate regions. Journal of Insect Science 
2012, 12:33. 

24.  Appiah EF, Ekesi S, Salifu D, Afreh-Nuamah K, Obeng-Ofori D, Khamis F, Mohamed SA: 
Effect of temperature on immature development and longevity of two introduced 
opiine parasitoids on Bactrocera invadens. Journal of Applied Entomology 2013, 
137:571-579. 

25.  Rwomushana I, Ekesi S, Ogol C, Gordon I: Effect of temperature on development and 
survival of immature stages of Bactrocera invadens (Diptera: Tephritidae). Journal of 
Applied Entomology 2008, 132:832-839. 

26.  Son Y, Chung YJ, Lee JH: Differential thermal biology may explain the coexistence of 
Platygaster matsutama and Inostemma seoulis (Hymenoptera: Platygastridae) 
attacking Thecodiplosis japonensis (Diptera: Cecidomyiidae). Journal of Asia-Pacific 
Entomology 2012, 15:465-471. 

27.  Son Y, Lee JH, Chung YJ: Temperature-dependent post-diapause development and 
prediction of spring emergence of the pine needle gall midge (Dipt., Cecidomyiidae). 
Journal of Applied Entomology 2007, 131:674-683. 

28.  Dosdall LM, Zalucki MP, Tansey JA, Furlong MJ: Developmental responses of the 
diamondback moth parasitoid Diadegma semiclausum (Hellen) (Hymenoptera: 
Ichneumonidae) to temperature and host plant species. Bulletin of Entomological 
Research 2012, 102:373-384. 

29.  Bahar MH, Soroka JJ, Dosdall LM: Constant versus fluctuating temperatures in the 
interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval 
parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental 
Entomology 2012, 41:1653-1661. 

30.  Qiu B, Zhou ZS, Luo SP, Xu ZF: Effect of temperature on development, survival, and 
fecundity of Microplitis manilae (Hymenoptera: Braconidae). Environmental 
Entomology 2012, 41:657-664. 

31.  Karimi-Malati A, Fathipour Y, Talebi AA: Development response of Spodoptera exigua 
to eight constant temperatures: Linear and nonlinear modeling. Journal of Asia-
Pacific Entomology 2014, 17:349-354. 

32.  Moiroux J, Boivin G, Brodeur J: Temperature influences host instar selection in an 
aphid parasitoid: support for the relative fitness rule. Biological Journal of the 
Linnean Society 2015, 115:792-801. 

33.  Zhou X-Ｒ, Bu Q-G, Pang B-P: Effects of temperature on life table parameters of the 
laboratory populations of Myzus persicae and Macrosiphum euphorbiae 
(Hemiptera:Aphididae). Acta Entomologica Sinica 2014, 57:837-843. 

34.  Luo SP, Zhang F, Wu KM: Effect of temperature on the reproductive biology of 
Peristenus spretus (Hymenoptera: Braconidae), a biological control agent of the 
plant bug Apolygus lucorum (Hemiptera: Miridae). Biocontrol Science and Technology 
2015, 25:1410-1425. 

35.  Lu YH, Wu KM, Wyckhuys KAG, Guo YY: Temperature-dependent life history of the 
green plant bug, Apolygus lucorum (Meyer-Dur) (Hemiptera: Miridae). Applied 
Entomology and Zoology 2010, 45:387-393. 



 12 

36.  Gomez-Torres ML, Nava DE, Parra JRP: Life Table of Tamarixia radiata (Hymenoptera: 
Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at different temperatures. 
Journal of Economic Entomology 2012, 105:338-343. 

37.  Liu YH, Tsai JH: Effects of temperature on biology and life table parameters of the 
Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera : Psyllidae). Annals of 
Applied Biology 2000, 137:201-206. 

38.  Le Lann C, Wardziak T, van Baaren J, van Alphen JJM: Thermal plasticity of metabolic 
rates linked to life-history traits and foraging behaviour in a parasitic wasp. 
Functional Ecology 2011, 25:641-651. 

39.  Asin L, Pons X: Effect of high temperature on the growth and reproduction of corn 
aphids (Homoptera : Aphididae) and implications for their population dynamics on 
the northeastern Iberian peninsula. Environmental Entomology 2001, 30:1127-1134. 

40.  Rodrigues MAT, Pereira FF, Kassab SO, Pastori PL, Glaeser DF, De Oliveira HN, 
Zanuncio JC: Thermal requirements and generation estimates of Trichospilus 
diatraeae (Hymenoptera: Eulophidae) in sugarcane producing regions of Brazil. 
Florida Entomologist 2013, 96:154-159. 

41.  King EG, Brewer FD, Martin DF: Development of Diatraea saccharalis [Lep.:Pyralidae] 
at constant temperatures. Entomophaga 1975, 20:301-306. 

 
  



 13 

Figure Captions 
Figure 1: Thermal performance curves that relate rearing temperature to development rate 

(fitness) for parasitoids and their hosts. The curves are diagrammatic but the critical values 

plotted for host and parasitoid critical thermal minima (CTmin), critical thermal maxima 

(CTmax) and optimal temperatures (Topt) represent the mean (SE) values calculated from the 

data in Table 1, see text for details. Thermal safety margin (TSM) is the difference between 

Topt and CTmax. 

 
Figure 2. The relative suitability of locations in Australia for Plutella xylostella and its 

parasitoid Diadegma semiclausum as predicted by combined CLIMEX models under a) 

current climate and b) predicted climate by 2070 [14]. Relative suitability for P. xylostella 

(RSPx) = [(GIPx – GIDs)/ GIPx] where GIPx = annual growth index for P. xylostella and GIDs = 

annual growth index for D. semiclausum [14]. White = locations not suitable for P. xylostella 

(GIPx = 0). Yellow = locations where conditions are equally suitable for P. xylostella and D. 

semiclausum (GIPx = GIDs). Blue = locations where suitability for D. semiclausum is greater 

than that for P. xylostella (GIDs > GIPx). In all other locations (dark red through pink) 

conditions are more suitable for P. xylostella than for D. semiclausum (GIPx > GIDs): dark red 

= locations which favour P. xylostella over D. semiclausum most (RSPx > 0.45); red (RSPx = 

0.31- 0.45); light red (RSPx = 0.16- 0.30); pink (RSPx = 0.01- 0.15). By 2070 predicted climate 
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change is likely to increase the relative suitability of locations in Zone A for P. xylostella 

considerably, almost eliminate the current advantage of D. semiclausum over P. xylostella in 

Zone B and significantly reduce that advantage in Zone C. 
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Table 1. Published studies reporting the critical thermal limits of parasitoids and their host insects 

Host  Parasitoid 

 

Species (Order) 

 

CTmin 

 

Topt 

 

CTmax 

  

Species (all Hymenoptera)  

Host stage 

attacked  

 

CTmin 

 

Topt 

 

CTmax 

Temp 

range (°C) 

 

References 

Heliothis virescens (Lepidoptera) 13.0 31.5 35.0  Trichogramma acacioi  Egg 9.9 25.0 30.0 20-30 [16], 17] 

Diaprepes abbreviatus (Coleoptera) 11.0 26.0 30.0  Fidiobia dominica  Egg 9.6 27.6 30.0 9-36 [18], [19] 

Diaprepes abbreviatus (Coleoptera) 11.0 26.0 30.0  Haeckeliania sperata  Egg 11.3 31.0 35.0 9-36 [18], [19] 

Diaprepes abbreviatus (Coleoptera) 11.0 26.0 30.0  Aprostocetus vaquitarum  Egg 15.8 30.9 33.0 5-40 [20], [19] 

Diaprepes abbreviatus (Coleoptera) 11.0 26.0 30.0  Quadrastichus haitiensis  Egg 16.0 32.0 33.8 5-33 [21], [19] 

Ceratitis capitata (Diptera) 10.0 35.6 47.0  Aganaspis daci  Larva 8.5 25.0 35.0 15-35 [22], [23] 

Bactrocera invadens (Diptera) 9.7 30.0 35.0  Diachasmimorpha longicaudata  Larva 9.0 20.0 31.0 15-35 [24], [25] 

Bactrocera invadens (Diptera) 9.7 30.0 35.0  Fopius arisanus Larva 8.0 20.0 35.0 15-35 [24], [25] 

Thecodiplosis japonensis (Diptera) 5.0 27.0 30.0  Platygaster matsutama  Larva 4.2 24.8 30.0 12-30  [26], [27] 

Thecodiplosis japonensis (Diptera) 5.0 27.0 30.0  Inostemma seoulis  Larva 8.4 26.5 30.0 12-30  [26], [27] 

Plutella xylostella (Lepidoptera) 7.4 30.0 38.0  Diadegma semiclausum Larva 6.0 20.0 30.0 10-30 [28], [29] 

Spodoptera exigua (Lepidoptera) 13.0 32.0 35.0  Microplitis manilae  Larva 11.0 28.0 33.0 17-32 [30], [31] 

Macrosiphum euphorbiae (Hemiptera) 5.0 20.0 27.0  Aphidius ervi Nymph 12.0 20.0 28.0 12-28 [32], [33] 

Apolygus lucorum (Hemiptera) 3.5 32.0 40.0  Peristenus spretus  Nymph 7.3 23.0 33.0 15-35 [34], [35] 

Diaphorina citri (Hemiptera) 10.5 30.0 41.0  Tamarixia radiata  Nymph -3.6 25.0 36.0 15-35  [36], [37] 

Sitobion avenae (Homoptera) 4.0 29.0 30.0  Aphidius rhopalosiphi  Nymph 3.5 25.0 27.0 10-25 [38], [39] 

Diatraea saccharalis (Lepidoptera) 8.0 30.0 35.0  Trichospilus diatraeae  Pupa 9.4 25.0 31.0 16-31 [40], [41] 

 


