376 research outputs found

    Helicoverpa armigera preference and performance on three cultivars of short-duration pigeonpea (Cajanus cajan): the importance of whole plant assays

    Get PDF
    BACKGROUND Helicoverpa armigera is a major pest of pigeonpea (Cajanus cajan). Efforts to develop pigeonpea varieties resistant to H. armigera attack have been met with limited success, despite reports of high levels of resistance to H. armigera in wild relatives of pigeonpea and reports of low to moderate levels of resistance in cultivated varieties. Here we examined H. armigera oviposition preference and larval performance on whole plants of three cultivars of short-duration pigeonpea: a susceptible control (ICPL 87) and two cultivars with purported host–plant resistance (ICPL 86012 and ICPL 88039). RESULTS In our no-choice oviposition experiment, H. armigera laid similar numbers of eggs on all three cultivars tested, but under choice conditions moths laid slightly more eggs on ICPL 88039. Larval growth and development were affected by cultivar, and larvae grew to the largest size (weight) and developed fastest on ICPL 86012. Moths laid most of their eggs on floral structures, sites where subsequent early instar larvae overwhelmingly fed. Experimentally placing neonate larvae at different locations on plants demonstrated that larvae placed on flowers experienced greater survival, faster development, and greater weight gain than those placed on leaves. The type and density of trichomes (a potential resistance trait) differed among cultivars and plant structures, but larvae selected to feed at sites where trichomes were absent. CONCLUSION Future work examining host–plant resistance against H. armigera should incorporate the behavioural preference of moths and larvae in experiments using whole plants as opposed to bioassays of excised plant parts in Petri dishes. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Developmental biology and prey preference of Diomus notescens Blackburn (Coleoptera: Coccinellidae): A predator of Aphis gossypii Glover (Hemiptera: Aphididae)

    Get PDF
    The minute two-spotted ladybeetle, Diomus notescens Blackburn is a common predator of aphids and other pests in Australian agricultural crops, however little is known about the biology of D. notescens. The aim of this study was to provide information on the life cycle of this predator and improve our understanding of its biological control potential, particularly against one of the major pests of cotton, Aphis gossypii Glover. In laboratory experiments, juvenile development, prey consumption, as well as adult lifespan and fecundity were studied. Results from this study revealed that D. notescens could successfully complete development on A. gossypii, which at 25 °C required 21 days and during this period they each consume 129 ± 5.2 aphids. At 25 °C adult lifespan was 77 ± 9.6 days, with a mean daily prey consumption of 28 ± 1.8 aphids and a mean daily fecundity of 8 ± 0.5 eggs. Net reproductive rate was estimated as 187 ± 25.1 females and the intrinsic rate of increase was estimated as 0.14. Juvenile development was recorded at four constant temperatures (15, 21, 26 and 27 °C) and using a linear model, the lower threshold for D. notescens development was estimated to be 10 ± 0.6 °C with 285 ± 4.7 degree days required to complete development. A prey choice experiment studying predation rates revealed a strong preference for A. gossypii nymphs compared to Bemisia tabaci Gennadius eggs

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    Spatial orientation of social caterpillars is influenced by polarized light

    Get PDF
    Processionary caterpillars of Thaumetopoea pityocampa (in Europe) and Ochrogaster lunifer (in Australia) (Lepidoptera: Notodontidae) form single files of larvae crawling head-to-tail when moving to feeding and pupation sites. We investigated if the processions are guided by polarization vision. The heading orientation of processions could be manipulated with linear polarizing filters held above the leading caterpillar. Exposure to changes in the angle of polarization around the caterpillars resulted in corresponding changes in heading angles. Anatomical analysis indicated specializations for polarization vision of stemma I in both species. Stemma I has a rhabdom with orthogonal and aligned microvilli, and an opaque and rugged surface, which are optimizations for skylight polarization vision, similar to the dorsal rim of adult insects. Stemmata II-VI have a smooth and shiny surface and lobed rhabdoms with non-orthogonal and non-aligned microvilli; they are thus optimized for general vision with minimal polarization sensitivity. Behavioural and anatomical evidence reveal that polarized light cues are important for larval orientation and can be robustly detected with a simple visual system

    The additive effect of a stem galling moth and a competitive plant on parthenium weed under CO2 enrichment

    Get PDF
    Parthenium weed (Parthenium hysterophorus) is a highly invasive plant that has invaded many parts of world including Australia. The present study reports on the effects of rising [CO2] on the performance of one of its biological control agents, stem-galling moth (Epiblema strenuana) when combined with a competitive plant, buffel grass (Cenchrus cilliaris). The study was carried out under controlled environment facilities during 2010–11. P. hysterophorus when grown under elevated [CO2] of 550 µmol mol−1, produced a greater biomass (27%), attained greater stature (31%), produced more branches (45%) and seeds plant−1 (20%), than those grown at ambient [CO2] of 380 µmol mol−1. Buffel grass reduced the biomass and seed production of P. hysterophorus plants by 33% and 22% under ambient [CO2] and by 19% and 17% under elevated [CO2], respectively. The combined effect of buffel grass and E. strenuana reduced dry biomass and seed production by 42% and 72% under ambient [CO2] and 29% and 37% elevated [CO2], respectively. Although the suppressive effect was different between ambient and elevated [CO2], the effect is likely to be retained. Stem gall formation by E. strenuana significantly enhanced the lateral branch production in plants grown under both [CO2]. Epiblema strenuana did not reduce the seed production of P. hysterophorus under the elevated [CO2] nevertheless, our earlier study had confirmed that many of the seeds produced under such conditions are not filled. This study has highlighted that the additive suppressive effect of E. strenuana and buffel grass on P. hysterophorus growth would be retained under future atmospheric CO2 enrichment

    The additive effect of a stem galling moth and a competitive plant on parthenium weed under CO2 enrichment

    Get PDF
    Parthenium weed (Parthenium hysterophorus) is a highly invasive plant that has invaded many parts of world including Australia. The present study reports on the effects of rising [CO2] on the performance of one of its biological control agents, stem-galling moth (Epiblema strenuana) when combined with a competitive plant, buffel grass (Cenchrus cilliaris). The study was carried out under controlled environment facilities during 2010–11. P. hysterophorus when grown under elevated [CO2] of 550 µmol mol−1, produced a greater biomass (27%), attained greater stature (31%), produced more branches (45%) and seeds plant−1 (20%), than those grown at ambient [CO2] of 380 µmol mol−1. Buffel grass reduced the biomass and seed production of P. hysterophorus plants by 33% and 22% under ambient [CO2] and by 19% and 17% under elevated [CO2], respectively. The combined effect of buffel grass and E. strenuana reduced dry biomass and seed production by 42% and 72% under ambient [CO2] and 29% and 37% elevated [CO2], respectively. Although the suppressive effect was different between ambient and elevated [CO2], the effect is likely to be retained. Stem gall formation by E. strenuana significantly enhanced the lateral branch production in plants grown under both [CO2]. Epiblema strenuana did not reduce the seed production of P. hysterophorus under the elevated [CO2] nevertheless, our earlier study had confirmed that many of the seeds produced under such conditions are not filled. This study has highlighted that the additive suppressive effect of E. strenuana and buffel grass on P. hysterophorus growth would be retained under future atmospheric CO2 enrichment
    • …
    corecore