5 research outputs found

    Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications

    No full text
    Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues

    Renal aspergillosis after COVID‐19‐associated pulmonary aspergillosis: A case report

    No full text
    Key Clinical Message Renal aspergillosis is a rare condition and this case the first case of Renal aspergillosis reported after COVID‐19‐associated pulmonary aspergillosis. Renal symptoms should arise clinical suspicion to renal involvement that happened as a result of hematogenous spreading of pulmonary aspergillosis. Abstract Secondary fungal infections are among the most significant complications that can arise after COVID‐19 and have the potential to lead to a high rate of morbidity and mortality. As COVID‐19 primarily involves the airway, the majority of fungal infections reported have been related to the respiratory system. However, renal aspergillosis that we have reported is a rare condition that also can occur. A 67‐year‐old man was referred to our hospital and admitted as a COVID‐19 patient. After the initial recovery, he experienced a recurrence of fever accompanied by a productive cough. The histopathological studies were conducted on the sputum and bronchoalveolar lavage samples, which revealed the presence of Aspergillus flavus. We treated the patient with voriconazole and the patient was discharged after a period of time. However, after approximately 6 months, he returned to the hospital with a fever and abdominal pain. We started a fever workup. Two new hypoechoic abscess‐like masses were spotted in the right kidney in the ultrasonography (U/S) and the direct molecular studies of the biopsy sample obtained under U/S guidance identified Aspergillus flavus. Although renal aspergillosis is a rare condition, it should not be overlooked, especially in patients with severe COVID‐19 and pulmonary aspergillosis, as these conditions can lead to renal aspergillosis, which may present with symptoms such as abdominal pain with fever. Therefore, it is necessary to perform radiological and histopathological studies when renal aspergillosis is suspected

    A cellular and molecular biology-based update for ivermectin against COVID-19: is it effective or non-effective?

    No full text
    Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19

    The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways

    No full text
    Abstract Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstrac

    Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients’ susceptibility to COVID-19 to the possible caution of future global diabetes tsunami

    No full text
    According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications
    corecore