35 research outputs found

    β-Cell Generation: Can Rodent Studies Be Translated to Humans?

    Get PDF
    β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells

    Bioluminescent reporter assay for monitoring ER stress in human beta cells

    No full text
    During type 1 diabetes development, cells in the islets of Langerhans engage adaptive mechanisms in response to inflammatory signals to cope with stress, to restore cellular homeostasis, and to preserve cell function. Disruption of these mechanisms may induce the formation of a repertoire of stress-induced neoantigens, which are critical in the loss of tolerance to beta cells and the development of autoimmunity. While multiple lines of evidence argue for a critical role of the endoplasmic reticulum in these processes, the lack of tools to specifically monitor beta cell stress hampers the development of therapeutic interventions focusing on maintaining endoplasmic reticulum homeostasis. Here we designed and evaluated a stress-induced reporter in which induction of stress correlates with increased light emission. This Gaussia luciferase-based reporter system employs the unconventional cytoplasmic splicing of XBP1 to report ER stress in cells exposed to known ER-stress inducers. Linking this reporter to a human beta cell-specific promotor allows tracing ER-stress in isolated human beta cells as well as in the EndoC-βH1 cell line. This reporter system represents a valuable tool to assess ER stress in human beta cells and may aid the identification of novel therapeutics that can prevent beta cell stress in human pancreatic islets
    corecore