5 research outputs found
Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
GaAs nanowire arrays have been prepared by anodization of GaAs substrates. The nanowires produced on (111)B GaAs substrates were found to be oriented predominantly perpendicular to the substrate surface. The prepared nanowire arrays have been coated with thin ZnO or TiO2 layers by means of thermal atomic layer deposition (ALD), thus coaxial core–shell hybrid structures are being fabricated. The hybrid structures have been characterized by scanning electron microscopy (SEM) for the morphology investigations, by Energy Dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis for the composition and crystal structure assessment, and by photoluminescence (PL) spectroscopy for obtaining an insight on emission polarization related to different recombination channels in the prepared core–shell structures
Recommended from our members
Aero-TiO2 Prepared on the Basis of Networks of ZnO Tetrapods
In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures and etching of the sacrificial template. Two procedures are applied for etching, one of which is wet etching in a citric acid aqua solution, while the other one is etching in a hydride vapor phase epitaxy (HVPE) system with HCl and hydrogen chemicals. The morphology, composition, and crystal structure of the produced aeromaterials are investigated depending on the temperature of annealing and the sequence of the technological steps. The performed photoluminescence analysis suggests that the developed aeromaterials are potential candidates for photocatalytic applications
Spin-Coating and Aerosol Spray Pyrolysis Processed Zn1−xMgxO Films for UV Detector Applications
A series of Zn1−xMgxO thin films with x ranging from 0 to 0.8 were prepared by spin coating and aerosol spray pyrolysis deposition on Si and quartz substrates. The morphology, composition, nano-crystalline structure, and optical and vibration properties of the prepared films were studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and optical and Raman scattering spectroscopy. The optimum conditions of the thermal treatment of samples prepared by spin coating were determined from the point of view of film crystallinity. The content of crystalline phases in films and values of the optical band gap of these phases were determined as a function of the chemical composition. We developed heterostructure photodetectors based on the prepared films and demonstrated their operation in the injection photodiode mode at forward biases. A device design based on two Zn1−xMgxO thin films with different x values was proposed for extending the operational forward bias range and improving its responsivity, detectivity, and selectivity to UV radiation
Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
GaAs nanowire arrays have been prepared by anodization of GaAs substrates. The nanowires produced on (111)B GaAs substrates were found to be oriented predominantly perpendicular to the substrate surface. The prepared nanowire arrays have been coated with thin ZnO or TiO2 layers by means of thermal atomic layer deposition (ALD), thus coaxial core–shell hybrid structures are being fabricated. The hybrid structures have been characterized by scanning electron microscopy (SEM) for the morphology investigations, by Energy Dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis for the composition and crystal structure assessment, and by photoluminescence (PL) spectroscopy for obtaining an insight on emission polarization related to different recombination channels in the prepared core–shell structures
Aero-TiO<sub>2</sub> Prepared on the Basis of Networks of ZnO Tetrapods
In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures and etching of the sacrificial template. Two procedures are applied for etching, one of which is wet etching in a citric acid aqua solution, while the other one is etching in a hydride vapor phase epitaxy (HVPE) system with HCl and hydrogen chemicals. The morphology, composition, and crystal structure of the produced aeromaterials are investigated depending on the temperature of annealing and the sequence of the technological steps. The performed photoluminescence analysis suggests that the developed aeromaterials are potential candidates for photocatalytic applications