4 research outputs found

    Clustering in ferronematics : The effect of magnetic collective ordering

    Get PDF
    Clustering of magnetic nanoparticles can dramatically change their collective magnetic properties, and it consequently may influence their performance in biomedical and technological applications. Owing to tailored surface modification of magnetic particles such composites represent stable systems. Here, we report ferronematic mixtures that contain anisotropic clusters of mesogen-hybridized cobalt ferrite nanoparticles dispersed in liquid crystal host studied by different experimental methods—magnetization measurements, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and capacitance measurements. These measurements reveal non-monotonic dependencies of magnetization curves and the Fréedericksz transition on the magnetic nanoparticles concentration. This can be explained by the formation of clusters, whose structures were determined by SAXS measurements. Complementary to the magnetization measurements, SANS measurements of the samples were performed for different magnetic field strengths to obtain information on the orientation of the liquid crystal molecules. We demonstrated that such hybrid materials offer new avenues for tunable materials

    Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration

    No full text
    In this paper, results acquired from capacitance measurements performed on composites based on nematic liquid crystal 4-cyano-4′-hexylbiphenyl (6CB) and spherical iron oxide nanoparticles of various sizes are presented. Electric and magnetic Fréedericksz transitions, as well as structural transitions in combined electric and magnetic fields, were investigated. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles. Estimations based on results obtained from measurements suggest soft anchoring between liquid crystal director and nanoparticles magnetization vector

    Dual Size-Dependent Effect of Fe3O4 Magnetic Nanoparticles Upon Interaction with Lysozyme Amyloid Fibrils: Disintegration and Adsorption

    No full text
    Nanomedicine compounds containing nanoparticles, such as iron oxides and gold, have been demonstrated to be effective in promoting different magnitudes of interaction with amyloid β fibrils, of which disintegrating or inhibiting effects are of great importance to treating fibrillary aggregation-induced neurological disorders such as Alzheimer’s disease. This research herein studies the interaction between lysozyme amyloid fibrils, a type of fibers derived from hen egg white lysozyme, and Fe3O4 magnetic nanoparticles (MNPs) of an assorted diameter sizes of 5 nm, 10 nm and 20 nm, using atomic force microscopy (AFM). Specifically, the effects of the sizes of negatively charged MNPs on the resultant amyloid fibrillary mixture was investigated. Our results of AFM images indicated that the interaction between MNPs and the fibrils commences immediately after adding MNPs to the fibril solution, and the actions of such MNPs-doped fibrillary interplay, either integration or segmentation, is strongly dependent on the size and volume concentration of MNPs. In the cases of 5 nm and 20 nm particles of equivalent volume concentration, the adsorption and agglomeration of MNPs onto the fibrillary surfaces was observed, whereas, interestingly, MNPs with diameter size of 10 nm enables segmentation of the slender fibrils into debris when a proper implemented volume concentration was found, which signifies utter destruction of the amyloid fibrillary structure

    Study on the Memory Effect in Aerosil-Filled Nematic Liquid Crystal Doped with Magnetic Nanoparticles

    No full text
    A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis of both light transmission and SAW attenuation responses investigated in the nematic phase. While in the case of SiO2 nanoparticles as dopants, the liquid crystal composite showed an improvement in the memory effect, the addition of Fe3O4 magnetic nanoparticles resulted in the memory effect decreasing. Additional studies showed a significant shift in both the threshold voltage and nematic–isotropic transition temperature. Measurements in the magnetic field confirmed the increasing memory effect according to that of pure 5CB. The properties of these composites could lead to a potential application for the fabrication of memory devices suitable for information storage
    corecore