318 research outputs found

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review

    Exact scaling in the expansion-modification system

    Full text link
    This work is devoted to the study of the scaling, and the consequent power-law behavior, of the correlation function in a mutation-replication model known as the expansion-modification system. The latter is a biology inspired random substitution model for the genome evolution, which is defined on a binary alphabet and depends on a parameter interpreted as a \emph{mutation probability}. We prove that the time-evolution of this system is such that any initial measure converges towards a unique stationary one exhibiting decay of correlations not slower than a power-law. We then prove, for a significant range of mutation probabilities, that the decay of correlations indeed follows a power-law with scaling exponent smoothly depending on the mutation probability. Finally we put forward an argument which allows us to give a closed expression for the corresponding scaling exponent for all the values of the mutation probability. Such a scaling exponent turns out to be a piecewise smooth function of the parameter.Comment: 22 pages, 2 figure

    Shuffling cards, factoring numbers, and the quantum baker's map

    Full text link
    It is pointed out that an exactly solvable permutation operator, viewed as the quantization of cyclic shifts, is useful in constructing a basis in which to study the quantum baker's map, a paradigm system of quantum chaos. In the basis of this operator the eigenfunctions of the quantum baker's map are compressed by factors of around five or more. We show explicitly its connection to an operator that is closely related to the usual quantum baker's map. This permutation operator has interesting connections to the art of shuffling cards as well as to the quantum factoring algorithm of Shor via the quantum order finding one. Hence we point out that this well-known quantum algorithm makes crucial use of a quantum chaotic operator, or at least one that is close to the quantization of the left-shift, a closeness that we also explore quantitatively.Comment: 12 pgs. Substantially elaborated version, including a new route to the quantum bakers map. To appear in J. Phys.

    Waiting time distributions for clusters of complex molecules

    Get PDF
    Waiting time distributions are in the core of theories for a large variety of subjects ranging from the analysis of patch clamp records to stochastic excitable systems. Here, we present a novel exact method for the calculation of waiting time distributions for state transitions of complex molecules with independent subunit dynamics. The absorbing state is a specific set of subunit states, i.e. is defined on the molecule level. Consequently, we formulate the problem as a random walk in the molecule state space. The subunits can possess an arbitrary number of states and any topology of transitions between them. The method circumvents problems arising from combinatorial explosion due to subunit coupling and requires solutions of the subunit master equation only

    Derivation of the Effective Chiral Lagrangian for Pseudoscalar Mesons from QCD

    Full text link
    We formally derive the chiral Lagrangian for low lying pseudoscalar mesons from the first principles of QCD considering the contributions from the normal part of the theory without taking approximations. The derivation is based on the standard generating functional of QCD in the path integral formalism. The gluon-field integration is formally carried out by expressing the result in terms of physical Green's functions of the gluon. To integrate over the quark-field, we introduce a bilocal auxiliary field Phi(x,y) representing the mesons. We then develop a consistent way of extracting the local pseudoscalar degree of freedom U(x) in Phi(x,y) and integrating out the rest degrees of freedom such that the complete pseudoscalar degree of freedom resides in U(x). With certain techniques, we work out the explicit U(x)-dependence of the effective action up to the p^4-terms in the momentum expansion, which leads to the desired chiral Lagrangian in which all the coefficients contributed from the normal part of the theory are expressed in terms of certain Green's functions in QCD. Together with the existing QCD formulae for the anomaly contributions, the present results leads to the complete QCD definition of the coefficients in the chiral Lagrangian. The relation between the present QCD definition of the p^2-order coefficient F_0^2 and the well-known approximate result given by Pagels and Stokar is discussed.Comment: 16 pages in RevTex, some typos are corrected, version for publication in Phys. Rev.

    Continuation for thin film hydrodynamics and related scalar problems

    Full text link
    This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution through transport equations for a single scalar field like a densities or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues
    • …
    corecore