2 research outputs found

    Extension of HOPS out to 500 pc (eHOPS). I. Identification and Modeling of Protostars in the Aquila Molecular Clouds

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present a Spitzer/Herschel focused survey of the Aquila molecular clouds (d ∼ 436 pc) as part of the eHOPS (extension of the Herschel orion protostar survey, or HOPS, Out to 500 ParSecs) census of nearby protostars. For every source detected in the Herschel/PACS bands, the eHOPS-Aquila catalog contains 1–850 μm SEDs assembled from the Two Micron All Sky Survey, Spitzer, Herschel, the Wide-field Infrared Survey Explorer, and James Clerk Maxwell Telescope/SCUBA-2 data. Using a newly developed set of criteria, we classify objects by their SEDs as protostars, pre-main-sequence stars with disks, and galaxies. A total of 172 protostars are found in Aquila, tightly concentrated in the molecular filaments that thread the clouds. Of these, 71 (42%) are Class 0 protostars, 54 (31%) are Class I protostars, 43 (25%) are flat-spectrum protostars, and four (2%) are Class II sources. Ten of the Class 0 protostars are young PACS bright red sources similar to those discovered in Orion. We compare the SEDs to a grid of radiative transfer models to constrain the luminosities, envelope densities, and envelope masses of the protostars. A comparison of the eHOPS-Aquila to the HOPS protostars in Orion finds that the protostellar luminosity functions in the two star-forming regions are statistically indistinguishable, the bolometric temperatures/envelope masses of eHOPS-Aquila protostars are shifted to cooler temperatures/higher masses, and the eHOPS-Aquila protostars do not show the decline in luminosity with evolution found in Orion. We briefly discuss whether these differences are due to biases between the samples, diverging star formation histories, or the influence of environment on protostellar evolution. © 2023. The Author(s). Published by the American Astronomical Society.R.P., S.T.M., and S.A.F. gratefully acknowledge the funding support for this work from the NASA/ADAP grants 80NSSC18K1564 and 80NSSC20K0454. S.T.M. and R.P. also acknowledge funding support from the NSF AST grant 2107827. R.A.G. acknowledges funding from the NASA/ADAP grant NNX17AF24G and the NSF AST grant 2107705. A.S. gratefully acknowledges support by the Fondecyt Regular (project code 1220610), and ANID BASAL projects ACE210002 and FB210003. M.O. acknowledges support from the MCIN/AEI/10.13039/ 501100011033 through the PID2020-114461GB-I00, and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía, and the European Regional Development Fund from the European Union through the grant P20-00880. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with NASA; it is also based on observations made with the Herschel Space Observatory, a European Space Agency Cornerstone Mission with significant participation by NASA. The Herschel spacecraft was designed, built, tested, and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at the spacecraft level, Thales Alenia Space (Turin) responsible for the service module and Astrium (Toulouse) is responsible for the telescope, with more than 100 subcontractors. The James Clerk Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics; the Korea Astronomy and Space Science Institute; the National Astronomical Research Institute of Thailand; Center for Astronomical Mega-Science (as well as the National Key R&D Program of China with No. 2017YFA0402700). Additional funding support is provided by the Science and Technology Facilities Council of the United Kingdom and participating universities and organizations in the United Kingdom and Canada. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. This publication also makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    The Rate, Amplitude, and Duration of Outbursts from Class 0 Protostars in Orion

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.At least half of a protostar's mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with ≥2 mag changes at 3.6 or 4.5 μm. This is comparable to the magnitude change of a known protostellar FU Ori outburst. Two are newly detected bursts from the protostars HOPS 12 and 124. The number of detections implies that Class 0 protostars burst every 438 yr, with a 95% confidence interval of 161 to 1884 yr. Combining Spitzer and WISE/NEOWISE data spanning 2004–2019, we show that the bursts persist for more than nine years with significant variability during each burst. Finally, we use 19–100 μm photometry from SOFIA, Spitzer, and Herschel to measure the amplitudes of the bursts. Based on the burst interval, a duration of 15 yr, and the range of observed amplitudes, 3%–100% of the mass accretion during the Class 0 phase occurs during bursts. In total, we show that bursts from Class 0 protostars are as frequent, or even more frequent, than those from more evolved protostars. This is consistent with bursts being driven by instabilities in disks triggered by rapid mass infall. Furthermore, we find that bursts may be a significant, if not dominant, mode of mass accretion during the Class 0 phase. © 2022. The Author(s). Published by the American Astronomical Society.This work uses observations from the Spitzer Space Telescope, operated by JPL/Caltech under a contract with NASA. This paper also uses data from the Wide-field Infrared Survey Explorer, a joint project of the University of California, Los Angeles, and JPL/Caltech, funded by NASA. Observations were also made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NNA17BF53C, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Finally, this work makes use of the NASA/IPAC Infrared Science Archive, operated by JPL/Caltech under a contract with NASA. S.T.M. and R.A.G. were supported by the NASA ADAP grant 80NSSC19K0591, and S.T.M. was supported by the NASA ADAP grant 80NSSC20K0454. R.P. was supported by the NASA ADAP grant 80NSSC18K1564. Support for W.J.F. was provided by NASA through award #07_0200 issued by USRA. A.S. gratefully acknowledges funding support through Fondecyt Regular (project code 1180350), from the ANID BASAL project FB210003, and from the Chilean Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA) BASAL grant AFB-170002. M.O. acknowledges support from the Spanish MINECO/AEI AYA2017-84390-C2-1-R (co-funded by FEDER) and MCIN/AEI/10.13039/501100011033 through the PID2020-114461GB-I00 grant, and from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). This work was completed while STM was a Fulbright Scholar hosted by AS at the Universidad de Concepcíon. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.Peer reviewe
    corecore