22 research outputs found

    Hedgehog Signaling Modulates InterleukinĂą 33Ăą Dependent Extrahepatic Bile Duct Cell Proliferation in Mice

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147852/1/hep41295_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147852/2/hep41295.pd

    Tumor Lysis Syndrome in a Retroperitoneal Sarcoma

    No full text
    In the present case, a 49-year-old white female presented to the clinic with a 2-month history of nausea, vomiting, and right upper quadrant pain. On examination a 3-cm mass on the right anterior scalene muscle was noted. A computed tomography scan was performed revealing a 8.7 × 7.7 × 6.1 cm retroperitoneal mass with possible invasion of the inferior vena cava and right renal and left common iliac veins. An excisional biopsy was performed with pathology compatible with spindle cell sarcoma. The patient was then sent for follow-up at the sarcoma clinic as an outpatient. However, before chemotherapy was to be started the patient would be admitted to the hospital with progressively worse nausea and vomiting. At that time the patient’s lab work showed lactic acidosis, acute renal failure, hyperuricemia, hyperphosphatemia, and hypocalcemia, which met the Cairo–Bishop criteria for tumor lysis syndrome (TLS). The patient was admitted to the intensive care unit and kidney dialysis initiated. The patient would become progressively obtunded at which time the family opted for hospice care. The patient eventually succumbed peacefully 3 days after her last admission. In this case report, we briefly review the literature on TLS in solid tumors, and we present a rare case of spontaneous TLS in a retroperitoneal sarcoma

    Preclinical In Vitro and In Vivo Evidence of an Antitumor Effect of CX-4945, a Casein Kinase II Inhibitor, in Cholangiocarcinoma

    No full text
    PURPOSE: We investigated the antitumor effect of the casein kinase II (CK2) inhibitor CX-4945 on cholangiocarcinoma (CCA). METHODS: We assessed the effect of CX-4945 alone and/or in combination with gemcitabine and cisplatin on cell viability, colony formation, and apoptosis of CCA cell lines and on in vivo growth of HuCCT1 xenografts. RESULTS: CX-4945 dose-dependently decreased viability of HuCCT1, EGI-1, and Liv27 and decreased phospho-AKT/total AKT and phospho-PTEN/total PTEN ratios. CX-4945 significantly increased caspase 3/7 activity in a dose- and time-dependent manner. CX-4945 significantly enhanced the effect of gemcitabine or cisplatin on HuCCT1, EGI-1, and Liv27 cells and inhibited the phosphorylation of DNA repairing enzymes XRCC1 and MDC1. Further, CX-4945 alone significantly inhibited growth of HuCCT1 mouse xenograft tumors. Combining CX-4945 with gemcitabine and cisplatin was more potent than CX-4945 alone or gemcitabine/cisplatin. The effect of CX-4945 on cell proliferation, apoptosis, the PI3K/AKT pathway, and DNA repair was confirmed in the mouse xenografts. CONCLUSION: CX-4945 has an antiproliferative effect on CCA and enhances the effect of gemcitabine and cisplatin through its inhibitory effect on the PI3K/AKT pathway and DNA repair

    Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling.

    No full text
    Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR) tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis.In vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation.After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer
    corecore