6 research outputs found
In Situ X-ray Diffraction as a Basic Tool to Study Oxide and Metal Oxide Catalysts
X-ray diffraction (XRD) is a standard technique that is widely applied in heterogeneous catalysis to determine phase composition, atomic structure, and size of crystallites. This review is focused on the application of in situ XRD for studying the catalysts during their ālifetimeā (under synthesis, activation, operation, and deactivation conditions), limiting the objects of research to oxide and metal oxide catalysts. Also included is a brief overview of modern techniques and instruments and the latest works illustrating different aspects of this technique in catalyst research. The main conclusion is that the field of heterogeneous catalysis research would benefit substantially from the application of in situ XRD for the structural, phase, and morphological characterization of solid catalysts. Even more useful information can be obtained if XRD is combined with other techniques that are more sensitive at length scales different from that of XRD
Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study
In this study, 3%Pd/Al2O3, 3%Pt/Al2O3 and bimetallic (1%Pd + 2%Pt)/Al2O3 catalysts were examined in the total oxidation of methane in a temperature range of 150–400 °C. The evolution of the active component under the reaction conditions was studied by transmission electron microscopy and in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. It was found that the platinum and bimetallic palladium-platinum catalysts are more stable against sintering than the palladium catalysts. For all the catalysts, the active component forms a “core-shell” structure in which the metallic core is covered by an oxide shell. The “core-shell” structure for the platinum and bimetallic palladium-platinum catalysts is stable in the temperature range of 150–400 °C. However, in the case of the palladium catalysts the metallic core undergoes the reversible oxidation at temperatures above 300 °C and reduced to the metallic state with the decrease in the reaction temperature. The scheme of the active component evolution during the oxidation of methane is proposed and discussed
The Formation of Mn-Ce-Zr Oxide Catalysts for CO and Propane Oxidation: The Role of Element Content Ratio
The MnOŃ
-ZrO2-CeO2 oxide catalysts were synthesized by co-precipitation method with varying (1) Zr/Zr + Ce molar ratio at constant manganese content of 0.3; (2) manganese content at constant Zr/Ce molar ratio of 1; (3) Mn/Mn + Zr molar ratio at constant Ce content of 0.5. Catalysts are characterized by XRD, N2 adsorption, TPR, and XPS. The catalytic activity of all the series was tested in the CO and propane oxidation reactions. In contrast to the variation of the manganese content, the Zr/Zr + Ce molar ratio does not significantly affect the catalytic properties. The dependence of the catalytic activity in CO oxidation on the manganese content has a Ā«volcanoĀ» shape, and the best catalytic performance is exhibited by the catalyst with Mn/(Zr + Ce) = 1. In the case of propane oxidation reaction, there is Ā«sigmaĀ» like dependence, activity increases with increase of Mn/(Mn + Zr + Ce) molar ratio up to 0.3, stabilizing with a further increase in the manganese content. XRD and XPS have shown that with an increase of the Mn concentration in the MnOx-ZrO2-CeO2 catalysts, the amount of crystalline manganese oxides such as Mn2O3 and Mn3O4, as well as the surface concentration of Mn cations, increases. While the content of MnxZryCe1-x-yO2 solid solution decreases, the concentration of manganese cations (x) in volume of MnxZryCe1-x-yO2 mixed oxide grows. The maximum activity in CO oxidation corresponds to the balance between the amount of the solid solution and the concentration of manganese cations in the volume of mixed oxide. The propane oxidation reaction is less sensitive to the state of manganese ion rather than to its amount. In this case, a decrease in the content of the MnxZryCe1-x-yO2 solid solution with increase in manganese amount in catalyst is compensated by an increase in content of crystalline manganese oxides and the surface concentration of manganese
Reversible Transformations of PalladiumāIndium Intermetallic Nanoparticles upon Repetitive Redox Treatments in H<sub>2</sub>/O<sub>2</sub>
The transformations of chemical states and structures occurring in the PdIn/Al2O3 catalyst upon redox treatments in different gaseous atmospheres at different temperatures are addressed by an assortment of in situ bulk- (XRD) and surface-sensitive (XPS and DRIFTS CO) techniques. Any desired state of the catalyst between two opposite extremes of highly dispersed oxide species and regularly ordered PdIn intermetallic compound could be set in fully controlled and reversible ways by selecting appropriate conditions for the reductive treatment starting from the fully oxidized state. Since mutual conversions of multi-atomic Pdn centers into single-site Pd1 centers are involved in these transformations, the methodology could be used to find an optimum balance between the activity and selectivity of the catalytic system
Robust method for uniform coating of carbon nanotubes with V<sub>2</sub>O<sub>5</sub> for next-generation transparent electrodes and Li-ion batteries
Composites comprising vanadium-pentoxide (V2O5) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, etc. We propose a novel, simple, and facile approach for SWCNT covering with V2O5 by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.8 eV. The material recrystallizes after thermal treatment at 600 Ā°C, achieving the work function of 5.8 eV. The key advantages of the method are that the obtained coating is uniform with a tunable thickness and does not require vacuuming or heating during processing. We demonstrate the groundbreaking results for two V2O5/SWCNT applications: transparent electrode and cathode for Li-ion batteries. As a transparent electrode, the composite shows stable sheet resistance of 160 Ī© sqā1 at a 90% transmittance (550 nm) - the best performance reported for SWCNTs doped by metal oxides. As a cathode material, the obtained specific capacity (330 mA h gā1) is the highest among all the other V2O5/SWCNT cathodes reported so far. This approach opens new horizons for the creation of the next generation of metal oxide composites for various applications, including optoelectronics and electrochemistry.</p