1,283 research outputs found

    Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects

    Full text link
    We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations varying slowly in space and time. We derive the wave-packet energy up to the first order gradient correction and obtain all kinds of Berry-phase terms for the semiclassical dynamics and the quantization rule. For electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely within a single-band picture without invoking inter-band couplings. For deformations in crystals, besides a deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be proportional to the Burgers vector around each dislocation.Comment: 12 pages, RevTe

    Quantum Hall effect in a p-type heterojunction with a lateral surface quantum dot superlattice

    Full text link
    The quantization of Hall conductance in a p-type heterojunction with lateral surface quantum dot superlattice is investigated. The topological properties of the four-component hole wavefunction are studied both in r- and k-spaces. New method of calculation of the Hall conductance in a 2D hole gas described by the Luttinger Hamiltonian and affected by lateral periodic potential is proposed, based on the investigation of four-component wavefunction singularities in k-space. The deviations from the quantization rules for Hofstadter "butterfly" for electrons are found, and the explanation of this effect is proposed. For the case of strong periodic potential the mixing of magnetic subbands is taken into account, and the exchange of the Chern numbers between magnetic subands is discussed.Comment: 12 pages, 5 figures; reported at the 15th Int. Conf. on High Magnetic Fields in Semicond. Phys. (Oxford, UK, 2002

    Solitons on Noncommutative Torus as Elliptic Calogero Gaudin Models, Branes and Laughlin Wave Functions

    Get PDF
    For the noncommutative torus T{\cal T}, in case of the N.C. parameter θ=Zn\theta = \frac{Z}{n}, we construct the basis of Hilbert space {\caH}_nintermsof in terms of \thetafunctionsofthepositions functions of the positions z_iof of nsolitons.Thewrappingaroundthetorusgeneratesthealgebra solitons. The wrapping around the torus generates the algebra {\cal A}_n,whichisthe, which is the Z_n \times Z_nHeisenberggroupon Heisenberg group on \thetafunctions.Wefindthegenerators functions. We find the generators gofanlocalelliptic of an local elliptic su(n),w, wtransform covariantly by the global gauge transformation of A{\cal A}By acting on Hn{\cal H}_n we establish the isomorphism of An{\cal A}_ngg. We embed this gg into the LL-matrix of the elliptic Gaudin andmodelstogivethedynamics.Themomentmapofthistwistedcotangentmodels to give the dynamics. The moment map of this twisted cotangent su_n({\cal T})bundleismatchedtothe bundle is matched to the DequationwithFayetIlliopoulossourceterm,sothedynamicsoftheN.C.solitonsbecomesthatofthebrane.Thegeometricconfiguration-equation with Fayet-Illiopoulos source term, so the dynamics of the N.C. solitons becomes that of the brane. The geometric configuration (k, u)ofth of thspectral curve detL(u)k=0{\rm det}|L(u) - k| = 0 describes the brane configuration, with the dynamical variables ziz_i of N.C. solitons asmodulimoduli T^{\otimes n} / S_n.Furthermore,intheN.C.ChernSimonstheoryforthequantumHalleffect,theconstrainequationwithquasiparticlesourceisidentifiedalsowiththemomentmapeqaution. Furthermore, in the N.C. Chern-Simons theory for the quantum Hall effect, the constrain equation with quasiparticle source is identified also with the moment map eqaution the N.C. sun(T)su_n({\cal T}) cotangent bundle with marked points. The eigenfunction of the Gaudin differential LL-operators as the Laughli$wavefunction is solved by Bethe ansatz.Comment: 25 pages, plain latex, no figure

    Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field

    Get PDF
    We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure

    Skyrmionic excitons

    Full text link
    We investigate the properties of a Skyrmionic exciton consisting of a negatively charged Skyrmion bound to a mobile valence hole. A variational wave function is constructed which has the generalized total momentum P as a good quantum number. It is shown that the Skyrmionic exciton can have a larger binding energy than an ordinary magnetoexciton and should therefore dominate the photoluminescence spectrum in high-mobility quantum wells and heterojunctions where the electron-hole separation exceeds a critical value. The dispersion relation for the Skyrmionic exciton is discussed.Comment: 9 pages, RevTex, 2 PostScript figures. Replaced with version to appear in Phys. Rev. B Rapid Communications. Short discussion of variational state adde

    Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands

    Full text link
    We have derived a new set of semiclassical equations for electrons in magnetic Bloch bands. The velocity and energy of magnetic Bloch electrons are found to be modified by the Berry phase and magnetization. This semiclassical approach is used to study general electron transport in a DC or AC electric field. We also find a close connection between the cyclotron orbits in magnetic Bloch bands and the energy subbands in the Hofstadter spectrum. Based on this formalism, the pattern of band splitting, the distribution of Hall conduct- ivities, and the positions of energy subbands in the Hofstadter spectrum can be understood in a simple and unified picture.Comment: 26 pages, Revtex, 6 figures included, submitted to Phys.Rev.

    Off-Diagonal Geometric Phases

    Get PDF
    We investigate the adiabatic evolution of a set of non-degenerate eigenstates of a parameterized Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend the familiar concept of Berry phase to the evolution of more than one state. We present several physical systems where these concepts can be applied, including an experiment on microwave cavities for which off-diagonal phases can be determined from published data.Comment: 5 pages 2 figures - RevTeX. Revised version including geometrical interpretatio

    Light scattering from disordered overlayers of metallic nanoparticles

    Full text link
    We develop a theory for light scattering from a disordered layer of metal nanoparticles resting on a sample. Averaging over different disorder realizations is done by a coherent potential approximation. The calculational scheme takes into account effects of retardation, multipole excitations, and interactions with the sample. We apply the theory to a system similar to the one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663 (1998)] who used a layered Si/SiO2_2/Si sample. The calculated results agree rather well with the experimental ones. In particular we find conspicuous maxima in the scattering intensity at long wavelengths (much longer than those corresponding to plasmon resonances in the particles). We show that these maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure

    Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems

    Get PDF
    We clarify the algebraic structure of continuous and discrete quasi-exactly solvable spectral problems by embedding them into the framework of the quantum inverse scattering method. The quasi-exactly solvable hamiltonians in one dimension are identified with traces of quantum monodromy matrices for specific integrable systems with non-periodic boundary conditions. Applications to the Azbel-Hofstadter problem are outlined.Comment: 15 pages, standard LaTe

    Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Full text link
    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are all most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory and the composite fermion theory, are physically equivalent.Comment: 37 pages, revte
    corecore