2,790 research outputs found

    Periodic and discrete Zak bases

    Full text link
    Weyl's displacement operators for position and momentum commute if the product of the elementary displacements equals Planck's constant. Then, their common eigenstates constitute the Zak basis, each state specified by two phase parameters. Upon enforcing a periodic dependence on the phases, one gets a one-to-one mapping of the Hilbert space on the line onto the Hilbert space on the torus. The Fourier coefficients of the periodic Zak bases make up the discrete Zak bases. The two bases are mutually unbiased. We study these bases in detail, including a brief discussion of their relation to Aharonov's modular operators, and mention how they can be used to associate with the single degree of freedom of the line a pair of genuine qubits.Comment: 15 pages, 3 figures; displayed abstract is shortened, see the paper for the complete abstrac

    Entropy on the von Neumann lattice and its evaluation

    Get PDF
    Based on the recently introduced averaging procedure in phase space, a new type of entropy is defined on the von Neumann lattice. This quantity can be interpreted as a measure of uncertainty associated with simultaneous measurement of the position and momentum observables in the discrete subset of the phase space. Evaluating for a class of the coherent states, it is shown that this entropy takes a stationary value for the ground state, modulo a unit cell of the lattice in such a class. This value for the ground state depends on the ratio of the position lattice spacing and the momentum lattice spacing. It is found that its minimum is realized for the perfect square lattice, i.e., absence of squeezing. Numerical evaluation of this minimum gives 1.386....Comment: 14 pages, no figures; J. Phys. A, in pres

    Mechanism for Multiple Ligand Recognition by the Human Transferrin Receptor

    Get PDF
    Transferrin receptor 1 (TfR) plays a critical role in cellular iron import for most higher organisms. Cell surface TfR binds to circulating iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes, where low pH promotes iron to dissociate from transferrin (Tf) in a TfR-assisted process. The iron-free form of Tf (apo-Tf) remains bound to TfR and is recycled to the cell surface, where the complex dissociates upon exposure to the slightly basic pH of the blood. Fe-Tf competes for binding to TfR with HFE, the protein mutated in the iron-overload disease hereditary hemochromatosis. We used a quantitative surface plasmon resonance assay to determine the binding affinities of an extensive set of site-directed TfR mutants to HFE and Fe-Tf at pH 7.4 and to apo-Tf at pH 6.3. These results confirm the previous finding that Fe-Tf and HFE compete for the receptor by binding to an overlapping site on the TfR helical domain. Spatially distant mutations in the TfR protease-like domain affect binding of Fe-Tf, but not iron-loaded Tf C-lobe, apo-Tf, or HFE, and mutations at the edge of the TfR helical domain affect binding of apo-Tf, but not Fe-Tf or HFE. The binding data presented here reveal the binding footprints on TfR for Fe-Tf and apo-Tf. These data support a model in which the Tf C-lobe contacts the TfR helical domain and the Tf N-lobe contacts the base of the TfR protease-like domain. The differential effects of some TfR mutations on binding to Fe-Tf and apo-Tf suggest differences in the contact points between TfR and the two forms of Tf that could be caused by pH-dependent conformational changes in Tf, TfR, or both. From these data, we propose a structure-based model for the mechanism of TfR-assisted iron release from Fe-Tf

    Hofstadter Problem on the Honeycomb and Triangular Lattices: Bethe Ansatz Solution

    Full text link
    We consider Bloch electrons on the honeycomb lattice under a uniform magnetic field with 2πp/q2 \pi p/q flux per cell. It is shown that the problem factorizes to two triangular lattices. Treating magnetic translations as Heisenberg-Weyl group and by the use of its irreducible representation on the space of theta functions, we find a nested set of Bethe equations, which determine the eigenstates and energy spectrum. The Bethe equations have simple form which allows to consider them further in the limit p,qp, q \to \infty by the technique of Thermodynamic Bethe Ansatz and analyze Hofstadter problem for the irrational flux.Comment: 7 pages, 2 figures, Revte

    Symmetry of Quantum Torus with Crossed Product Algebra

    Full text link
    In this paper, we study the symmetry of quantum torus with the concept of crossed product algebra. As a classical counterpart, we consider the orbifold of classical torus with complex structure and investigate the transformation property of classical theta function. An invariant function under the group action is constructed as a variant of the classical theta function. Then our main issue, the crossed product algebra representation of quantum torus with complex structure under the symplectic group is analyzed as a quantum version of orbifolding. We perform this analysis with Manin's so-called model II quantum theta function approach. The symplectic group Sp(2n,Z) satisfies the consistency condition of crossed product algebra representation. However, only a subgroup of Sp(2n,Z) satisfies the consistency condition for orbifolding of quantum torus.Comment: LaTeX 17pages, changes in section 3 on crossed product algebr

    Emergent Classicality via Commuting Position and Momentum Operators

    Full text link
    Any account of the emergence of classicality from quantum theory must address the fact that the quantum operators representing positions and momenta do not commute, whereas their classical counterparts suffer no such restrictions. To address this, we revive an old idea of von Neumann, and seek a pair of commuting operators X,PX,P which are, in a specific sense, "close" to the canonical non-commuting position and momentum operators, x,px,p. The construction of such operators is related to the problem of finding complete sets of orthonormal phase space localized states, a problem severely limited by the Balian-Low theorem. Here these limitations are avoided by restricting attention to situations in which the density matrix is reasonably decohered (i.e., spread out in phase space).Comment: To appear in Proceedings of the 2008 DICE Conferenc

    Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects

    Full text link
    We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations varying slowly in space and time. We derive the wave-packet energy up to the first order gradient correction and obtain all kinds of Berry-phase terms for the semiclassical dynamics and the quantization rule. For electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely within a single-band picture without invoking inter-band couplings. For deformations in crystals, besides a deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be proportional to the Burgers vector around each dislocation.Comment: 12 pages, RevTe

    von Neumann Lattices in Finite Dimensions Hilbert Spaces

    Full text link
    The prime number decomposition of a finite dimensional Hilbert space reflects itself in the representations that the space accommodates. The representations appear in conjugate pairs for factorization to two relative prime factors which can be viewed as two distinct degrees freedom. These, Schwinger's quantum degrees of freedom, are uniquely related to a von Neumann lattices in the phase space that characterizes the Hilbert space and specifies the simultaneous definitions of both (modular) positions and (modular) momenta. The area in phase space for each quantum state in each of these quantum degrees of freedom, is shown to be exactly hh, Planck's constant.Comment: 16 page
    corecore