906 research outputs found

    The Influence of High Multiplicities at RHIC on the Gamov Factor

    Get PDF
    The corrections for two-pion correlations due to electromagnetic final-state interactions at high secondary multiplicities are investigated. The analysis is performed by solving the Schr\"odinger equation with a potential which is dictated by the multi-particle environment. Two different post-freeze-out scenarios are examined. First, for a uniformly spread environment of secondary particles, a screened Coulomb potential is exploited. It is shown that the presence of a static and uniform post-freeze-out medium results in a noticeable deviation from the standard Gamov factor. However, after going to a more realistic model of an expanding pion system, this conclusion changes drastically. We argue that the density of the secondary pions n_\pi(t,R), where R is a distance from the fireball, is bounded from above by n_\pi(t,R)\le const/R^2 for all times t. Then, a two-particle scalar potential which is found as a solution of the Maxwell equation for non-uniform medium replaces the screened one. Even this upper limit does not result in an essential deviation from the Gamov correction.Comment: 11 pages, 7 figures, minor text corrections are mad

    Some forgotten features of the Bose Einstein Correlations

    Full text link
    Notwithstanding the visible maturity of the subject of Bose-Einstein Correlations (BEC), as witnessed nowadays, we would like to bring to ones attention two points, which apparently did not received attention they deserve: the problem of the choice of the form of C2(Q)C_2(Q) correlation function when effects of partial coherence of the hadronizing source are to be included and the feasibility to model effects of Bose-Einstein statistics, in particular the BEC, by direct numerical simulations.Comment: Talk delivered by G.Wilk at the International Workshop {\it Relativistic Nuclear Physics: from Nuclotron to LHC energies}, Kiev, June 18-22, 2007, Ukraine; misprints correcte

    On kinematics and dynamics of independent pion emission

    Get PDF
    Multiparticle boson states, proposed recently for 'independently' emitted pions in heavy ion collisions, are reconsidered in standard second quantized formalism and shown to emerge from a simplistic chaotic current dynamics. Compact equations relate the density operator, the generating functional of multiparticle counts, and the correlator of the external current to each other. 'Bose-Einstein-condensation' is related to the external pulse. A quantum master equation is advocated for future Monte-Carlo simulations.Comment: 10 pages LaTeX, Sec.7 adde

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997

    Hanbury-Brown--Twiss Analysis in a Solvable Model

    Full text link
    The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is tested with a simple model of meson production by resonance decay. We derive conditions which should be satisfied in order to relate the measured momentum correlation to the classical source size. The Bose correlation effects are apparent in both the ratio of meson pairs to singles and in the ratio of like to unlike pairs. With our parameter values, we find that the single particle distribution is too distorted by the correlation to allow a straightforward analysis using pair correlation normalized by the singles rates. An analysis comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3

    Hbt Analysis of Anisotropic Transverse Flow

    Get PDF
    The effects of anisotropic transverse collective flow on the HBT correlation function is studied. There exist three different physics contributions related to flow which affect the correlation function: anisotropic source shape, anisotropic space-momentum correlations in pion emission, and the effects related to the HBT measurement of the size of a moving source in different reference frames. Resolution of these contributions experimentally can lead to a detailed understanding of both collective flow in nucleus-nucleus collisions and the HBT technique itself. A method is presented which permits the derivation of model independent relations between the radius of a source measured in a frame in which it is moving and in its rest frame.Comment: latex, 16 pages, 1 figur

    Testing the Resolving Power of 2-D K^+ K^+ Interferometry

    Get PDF
    Adopting a procedure previously proposed to quantitatively study two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., if no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case, although it still is possible to distinguish two distinct decoupling geometries. The present analysis seems to favor scenarios with no resonance formation at the AGS energy range, if the preliminary K^+ K^+ data are confirmed. The possible compatibility of data with zero decoupling proper time interval, conjectured by the 3-D experimental analysis, is also investigated and is ruled out when considering more realistic dynamical models with expanding sources. These results, however, clearly evidence the important influence of the time emission interval on the source effective transverse dimensions. Furthermore, they strongly emphasize that the static Gaussian parameterization, commonly used to fit data, cannot be trusted under more realistic conditions, leading to distorted or even wrong interpretation of the source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include

    Multi-boson effects and the normalization of the two-pion correlation function

    Get PDF
    The two-pion correlation function can be defined as a ratio of either the measured momentum distributions or the normalized momentum space probabilities. We show that the first alternative avoids certain ambiguities since then the normalization of the two-pion correlator contains important information on the multiplicity distribution of the event ensemble which is lost in the second alternative. We illustrate this explicitly for specific classes of event ensembles.Comment: 6 pages, three figures,submit to PR
    corecore