6 research outputs found

    HDR-ChipQA: No-Reference Quality Assessment on High Dynamic Range Videos

    Full text link
    We present a no-reference video quality model and algorithm that delivers standout performance for High Dynamic Range (HDR) videos, which we call HDR-ChipQA. HDR videos represent wider ranges of luminances, details, and colors than Standard Dynamic Range (SDR) videos. The growing adoption of HDR in massively scaled video networks has driven the need for video quality assessment (VQA) algorithms that better account for distortions on HDR content. In particular, standard VQA models may fail to capture conspicuous distortions at the extreme ends of the dynamic range, because the features that drive them may be dominated by distortions {that pervade the mid-ranges of the signal}. We introduce a new approach whereby a local expansive nonlinearity emphasizes distortions occurring at the higher and lower ends of the {local} luma range, allowing for the definition of additional quality-aware features that are computed along a separate path. These features are not HDR-specific, and also improve VQA on SDR video contents, albeit to a reduced degree. We show that this preprocessing step significantly boosts the power of distortion-sensitive natural video statistics (NVS) features when used to predict the quality of HDR content. In similar manner, we separately compute novel wide-gamut color features using the same nonlinear processing steps. We have found that our model significantly outperforms SDR VQA algorithms on the only publicly available, comprehensive HDR database, while also attaining state-of-the-art performance on SDR content

    Making Video Quality Assessment Models Robust to Bit Depth

    Full text link
    We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.Comment: Published in IEEE Signal Processing Letters 202

    HDR or SDR? A Subjective and Objective Study of Scaled and Compressed Videos

    Full text link
    We conducted a large-scale study of human perceptual quality judgments of High Dynamic Range (HDR) and Standard Dynamic Range (SDR) videos subjected to scaling and compression levels and viewed on three different display devices. HDR videos are able to present wider color gamuts, better contrasts, and brighter whites and darker blacks than SDR videos. While conventional expectations are that HDR quality is better than SDR quality, we have found subject preference of HDR versus SDR depends heavily on the display device, as well as on resolution scaling and bitrate. To study this question, we collected more than 23,000 quality ratings from 67 volunteers who watched 356 videos on OLED, QLED, and LCD televisions. Since it is of interest to be able to measure the quality of videos under these scenarios, e.g. to inform decisions regarding scaling, compression, and SDR vs HDR, we tested several well-known full-reference and no-reference video quality models on the new database. Towards advancing progress on this problem, we also developed a novel no-reference model called HDRPatchMAX, that uses both classical and bit-depth sensitive distortion statistics more accurately than existing metrics

    Perceptual video quality assessment: the journey continues!

    Get PDF
    Perceptual Video Quality Assessment (VQA) is one of the most fundamental and challenging problems in the field of Video Engineering. Along with video compression, it has become one of two dominant theoretical and algorithmic technologies in television streaming and social media. Over the last 2 decades, the volume of video traffic over the internet has grown exponentially, powered by rapid advancements in cloud services, faster video compression technologies, and increased access to high-speed, low-latency wireless internet connectivity. This has given rise to issues related to delivering extraordinary volumes of picture and video data to an increasingly sophisticated and demanding global audience. Consequently, developing algorithms to measure the quality of pictures and videos as perceived by humans has become increasingly critical since these algorithms can be used to perceptually optimize trade-offs between quality and bandwidth consumption. VQA models have evolved from algorithms developed for generic 2D videos to specialized algorithms explicitly designed for on-demand video streaming, user-generated content (UGC), virtual and augmented reality (VR and AR), cloud gaming, high dynamic range (HDR), and high frame rate (HFR) scenarios. Along the way, we also describe the advancement in algorithm design, beginning with traditional hand-crafted feature-based methods and finishing with current deep-learning models powering accurate VQA algorithms. We also discuss the evolution of Subjective Video Quality databases containing videos and human-annotated quality scores, which are the necessary tools to create, test, compare, and benchmark VQA algorithms. To finish, we discuss emerging trends in VQA algorithm design and general perspectives on the evolution of Video Quality Assessment in the foreseeable future
    corecore