5,597 research outputs found

    Deformation of generic submanifolds in a complex manifold

    Get PDF
    This paper shows that an arbitrary generic submanifold in a complex manifold can be deformed into a 1-parameter family of generic submanifolds satisfying strong nondegeneracy conditions. The proofs use a careful analysis of the jet spaces of embeddings satisfying certain nondegeneracy properties, and also make use of the Thom transversality theorem, as well as the stratification of real-algebraic sets. Optimal results on the order of nondegeneracy are given.Comment: 24 page

    Quasiclassical approach to the spin-Hall effect in the two-dimensional electron gas

    Get PDF
    We study the spin-charge coupled transport in a two-dimensional electron system using the method of quasiclassical (Îľ\xi-integrated) Green's functions. In particular we derive the Eilenberger equation in the presence of a generic spin-orbit field. The method allows us to study spin and charge transport from ballistic to diffusive regimes and continuity equations for spin and charge are automatically incorporated. In the clean limit we establish the connection between the spin-Hall conductivity and the Berry phase in momentum space. For finite systems we solve the Eilenberger equation numerically for the special case of the Rashba spin-orbit coupling and a two-terminal geometry. In particular, we calculate explicitly the spin-Hall induced spin polarization in the corners, predicted by Mishchenko et al. [13]. Furthermore we find universal spin currents in the short-time dynamics after switching on the voltage across the sample, and calculate the corresponding spin-Hall polarization at the edges. Where available, we find perfect agreement with analytical results.Comment: 9 pages, 6 figure

    Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator

    Get PDF
    We study theoretically a radio frequency superconducting interference device integrated with both a nanomechanical resonator and an LC one. By applying adiabatic and rotating wave approximations, we obtain an effective Hamiltonian that governs the dynamics of the mechanical and LC resonators. Nonlinear terms in this Hamiltonian can be exploited for performing a quantum nondemolition measurement of Fock states of the nanomechanical resonator. We address the feasibility of experimental implementation and show that the nonlinear coupling can be made sufficiently strong to allow the detection of discrete mechanical Fock states

    Displacement Detection with a Vibrating RF SQUID: Beating the Standard Linear Limit

    Get PDF
    We study a novel configuration for displacement detection consisting of a nanomechanical resonator coupled to both, a radio frequency superconducting interference device (RF SQUID) and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand, we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system, resulting in a limited bandwidth

    Efficient Peltier refrigeration by a pair of normal metal/ insulator/superconductor junctions

    Full text link
    We suggest and demonstrate in experiment that two normal metal /insulator/ superconductor (NIS) tunnel junctions combined in series to form a symmetric SINIS structure can operate as an efficient Peltier refrigerator. Specifically, it is shown that the SINIS structure with normal-state junction resistances 1.0 and 1.1 kΩ\Omega is capable of reaching a temperature of about 100 mK starting from 300 mK. We estimate the corresponding cooling power to be 1.5 pW per total junction area of 0.8 μ\mum2^2 at T=300T= 300 mK.Comment: 7 pages, revtex, 3 figures by fax/conventional mail upon reques

    Boundary resistance in magnetic multilayers

    Full text link
    Quasiclassical boundary conditions for electrochemical potentials at the interface between diffusive ferromagnetic and non-magnetic metals are derived for the first time. An expression for the boundary resistance accurately accounts for the momentum conservation law as well as essential gradients of the chemical potentials. Conditions are established at which spin-asymmetry of the boundary resistance has positive or negative sign. Dependence of the spin asymmetry and the absolute value of the boundary resistance on the exchange splitting of the conduction band opens up new possibility to estimate spin polarization of the conduction band of ferromagnetic metals. Consistency of the theory is checked on existing experimental data.Comment: 8 pages, 3 figures, designed using IOPART styl

    Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC-magnetic field sensitivity

    Full text link
    We report a systematic study of the magnetic field sensitivity of a magnetic sensor based on a single Nitrogen-Vacancy (NV) defect in diamond, by using continuous optically detected electron spin resonance (ESR) spectroscopy. We first investigate the behavior of the ESR contrast and linewidth as a function of the microwave and optical pumping power. The experimental results are in good agreement with a simplified model of the NV defect spin dynamics, yielding to an optimized sensitivity around 2 \mu T/\sqrt{\rm Hz}. We then demonstrate an enhancement of the magnetic sensitivity by one order of magnitude by using a simple pulsed-ESR scheme. This technique is based on repetitive excitation of the NV defect with a resonant microwave \pi-pulse followed by an optimized read-out laser pulse, allowing to fully eliminate power broadening of the ESR linewidth. The achieved sensitivity is similar to the one obtained by using Ramsey-type sequences, which is the optimal magnetic field sensitivity for the detection of DC magnetic fields
    • …
    corecore