29 research outputs found
Climate Control in Mediterranean Greenhouses
As climate control in greenhouses directly affects crop yields, there is an increasing trend for advancements in environmentally controlled agricultural-production techniques. In the Mediterranean region, the temperatures during the period from December to February are below 12°C when the daily total radiation 8.4 MJ/m2day. Based on the region?s climate data, greenhouses require heating during the period from November to March, ventilation and shading from February to May and cooling from June to September. In order to maintain day and night temperatures of 18/16°C, annual heat energy requirement of PE greenhouses is 95-256 kWh/m2. In view of environment and production costs, conservation of heating energy is as important as heating itself. Heat energy saving is about 37% when energy curtains are used. Greenhouse temperature can be increased by 8°C in palliative non-heated greenhouses where energy curtains and water mattresses are used in addition to passively used solar energy. Ventilation openings at the roofs of these greenhouses should adequately be 20-25%. When outside noon-time temperature is above 30°C in June, evaporative cooling of greenhouse is essential. Depending on outside humidity and volume of exchanged air for cooling, a temperature difference of 6°C can be achieved with evaporative cooling of greenhouses in August
Optimización de la resistencia a compresión de lechadas de cemento reforzadas con aditivos
The Taguchi method was used in this study to optimize the unconfined (7-, 14- and 28-day) compressive strength of cement-based grouts with bentonite, fly ash and silica fume admixtures. The experiments were designed using an L16 orthogonal array in which the three factors considered were bentonite (0%, 0.5%, 1.0% and 3%), fly ash (10%, 20%, 30% and 40%) and silica fume (0%, 5%, 10% and 20%) content. The experimental results, which were analyzed by ANOVA and the Taguchi method, showed that fly ash and silica fume content play a significant role in unconfined compressive strength. The optimum conditions were found to be: 0% bentonite, 10% fly ash, 20% silica fume and 28 days of curing time. The maximum unconfined compressive strength reached under the above optimum conditions was 17.1 MPa.En el presente trabajo se ha intentado optimizar, mediante el método de Taguchi, las resistencias a compresión (a las edades de 7, 14 y 28 días) de lechadas de cemento reforzadas con bentonita, cenizas volantes y humo de sílice. Se diseñaron los experimentos de acuerdo con un arreglo ortogonal tipo L16 en el que se contemplaban tres factores: la bentonita (0, 0,5, 1 y 3%), las cenizas volantes (10, 20, 30 y 40%) y el humo de sílice (0, 5, 10 y 20%) (porcentajes en peso del sólido). Los datos obtenidos se analizaron con mediante ANOVA y el método de Taguchi. De acuerdo con los resultados experimentales, el contenido tanto de cenizas volantes como de humo de sílice desempeña un papel significativo en la resistencia a compresión. Por otra parte, las condiciones óptimas que se han identificado son: 0% bentonita, 10% cenizas volantes, 20% humo de sílice y 28 días de tiempo de curado. La resistencia a compresión máxima conseguida en las anteriores condiciones era de 17,1 MPa
Taguchi approach for investigation of the setting times on cement-based grouts
63-67Investigations on the effect of
the bentonite, fly ash and silica fume on the initial and final setting time of
cement-based grouts are reported here. Three additives (bentonite, fly ash and
silica fume) were used in the grout mixes to improve the setting time of the
grouts. Taguchi method was employed for the experiments and standard L16 orthogonal array with 3 parameters
and 4 levels were chosen. Experimental results show that the most efficient
materials for the initial and final setting time are silica fume and bentonite,
respectively. The initial and final setting times have been found to decrease
rapidly with the increase in silica fume and bentonite ratio, while they
rapidly increase with the increase of fly ash ratio. The Taguchi method has
been found to be suitable for such studies
Influence of Waste Toothbrush Fiber on Strength and Freezing–Thawing Behavior in High Plasticity Clay
The use of waste materials in civil engineering applications has gained importance nowadays. Consuming limited natural resources and increasing waste disposal costs have led researchers to evaluate waste materials for different geotechnical applications. In this respect, some waste materials are used as reinforcement in soils to improve their engineering properties. The main objective of this paper was to investigate the usability of waste polypropylene fiber as a reinforcement material in high plasticity fine-grained soils. For this purpose, waste toothbrush bristle (WTB) was used as a polypropylene fiber reinforcement material and added to fine-grained soil at ratios of 0.2%, 0.4%, 0.6% and 0.8% by dry total weight. The effect of WTB on freezing–thawing behavior and unconfined compression strength of unreinforced and reinforced clayey soil was evaluated. The results indicated that addition of WTB to high plasticity clay improved its behavior against freezing–thawing. Also, undrained shear strength increases with respect to increment in WTB ratio