7 research outputs found

    When Does Re-initialization Work?

    Full text link
    Re-initializing a neural network during training has been observed to improve generalization in recent works. Yet it is neither widely adopted in deep learning practice nor is it often used in state-of-the-art training protocols. This raises the question of when re-initialization works, and whether it should be used together with regularization techniques such as data augmentation, weight decay and learning rate schedules. In this work, we conduct an extensive empirical comparison of standard training with a selection of re-initialization methods to answer this question, training over 15,000 models on a variety of image classification benchmarks. We first establish that such methods are consistently beneficial for generalization in the absence of any other regularization. However, when deployed alongside other carefully tuned regularization techniques, re-initialization methods offer little to no added benefit for generalization, although optimal generalization performance becomes less sensitive to the choice of learning rate and weight decay hyperparameters. To investigate the impact of re-initialization methods on noisy data, we also consider learning under label noise. Surprisingly, in this case, re-initialization significantly improves upon standard training, even in the presence of other carefully tuned regularization techniques.Comment: Published in PMLR Volume 187; spotlight presentation at I Can't Believe It's Not Better Workshop at NeurIPS 202

    Effectiveness and resource requirements of test, trace and isolate strategies for COVID in the UK.

    Get PDF
    We use an individual-level transmission and contact simulation model to explore the effectiveness and resource requirements of various test-trace-isolate (TTI) strategies for reducing the spread of SARS-CoV-2 in the UK, in the context of different scenarios with varying levels of stringency of non-pharmaceutical interventions. Based on modelling results, we show that self-isolation of symptomatic individuals and quarantine of their household contacts has a substantial impact on the number of new infections generated by each primary case. We further show that adding contact tracing of non-household contacts of confirmed cases to this broader package of interventions reduces the number of new infections otherwise generated by 5-15%. We also explore impact of key factors, such as tracing application adoption and testing delay, on overall effectiveness of TTI
    corecore