25 research outputs found
Low-Density Code-Domain NOMA: Better Be Regular
A closed-form analytical expression is derived for the limiting empirical
squared singular value density of a spreading (signature) matrix corresponding
to sparse low-density code-domain (LDCD) non-orthogonal multiple-access (NOMA)
with regular random user-resource allocation. The derivation relies on
associating the spreading matrix with the adjacency matrix of a large
semiregular bipartite graph. For a simple repetition-based sparse spreading
scheme, the result directly follows from a rigorous analysis of spectral
measures of infinite graphs. Turning to random (sparse) binary spreading, we
harness the cavity method from statistical physics, and show that the limiting
spectral density coincides in both cases. Next, we use this density to compute
the normalized input-output mutual information of the underlying vector channel
in the large-system limit. The latter may be interpreted as the achievable
total throughput per dimension with optimum processing in a corresponding
multiple-access channel setting or, alternatively, in a fully-symmetric
broadcast channel setting with full decoding capabilities at each receiver.
Surprisingly, the total throughput of regular LDCD-NOMA is found to be not only
superior to that achieved with irregular user-resource allocation, but also to
the total throughput of dense randomly-spread NOMA, for which optimum
processing is computationally intractable. In contrast, the superior
performance of regular LDCD-NOMA can be potentially achieved with a feasible
message-passing algorithm. This observation may advocate employing regular,
rather than irregular, LDCD-NOMA in 5G cellular physical layer design.Comment: Accepted for publication in the IEEE International Symposium on
Information Theory (ISIT), June 201
Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links
Cooperative technology is expected to have a great impact on the performance
of cellular or, more generally, infrastructure networks. Both multicell
processing (cooperation among base stations) and relaying (cooperation at the
user level) are currently being investigated. In this presentation, recent
results regarding the performance of multicell processing and user cooperation
under the assumption of limited-capacity interbase station and inter-user
links, respectively, are reviewed. The survey focuses on related results
derived for non-fading uplink and downlink channels of simple cellular system
models. The analytical treatment, facilitated by these simple setups, enhances
the insight into the limitations imposed by limited-capacity constraints on the
gains achievable by cooperative techniques
A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions
Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and play crucial roles in cell-matrix sensing. Considerable information is available on the complex molecular composition of these sites, yet the regulation of FA dynamics is largely unknown. Based on a combination of FRAP studies in live cells, with in silico simulations and mathematical modeling, we show that the FA plaque proteins paxillin and vinculin exist in four dynamic states: an immobile FA-bound fraction, an FA-associated fraction undergoing exchange, a juxtamembrane fraction experiencing attenuated diffusion, and a fast-diffusing cytoplasmic pool. The juxtamembrane region surrounding FAs displays a gradient of FA plaque proteins with respect to both concentration and dynamics. Based on these findings, we propose a new model for the regulation of FA dynamics in which this juxtamembrane domain acts as an intermediary layer, enabling an efficient regulation of FA formation and reorganization
Substrate Adhesion Regulates Sealing Zone Architecture and Dynamics in Cultured Osteoclasts
The bone-degrading activity of osteoclasts depends on the formation of a cytoskeletal-adhesive super-structure known as the sealing zone (SZ). The SZ is a dynamic structure, consisting of a condensed array of podosomes, the elementary adhesion-mediating structures of osteoclasts, interconnected by F-actin filaments. The molecular composition and structure of the SZ were extensively investigated, yet despite its major importance for bone formation and remodelling, the mechanisms underlying its assembly and dynamics are still poorly understood. Here we determine the relations between matrix adhesiveness and the formation, stability and expansion of the SZ. By growing differentiated osteoclasts on micro-patterned glass substrates, where adhesive areas are separated by non-adhesive PLL-g-PEG barriers, we show that SZ growth and fusion strictly depend on the continuity of substrate adhesiveness, at the micrometer scale. We present a possible model for the role of mechanical forces in SZ formation and reorganization, inspired by the current data
Beyond Equal-Power Sparse NOMA: Two User Classes and Closed-Form Bounds on the Achievable Region
Non-orthogonal multiple access (NOMA) is a promising technology for future beyond-5G wireless networks, whose fundamental information-theoretic limits are yet to be fully explored. Considering regular sparse code-domain NOMA (with a fixed and finite number of orthogonal resources allocated to any designated user and vice versa), this paper extends previous results by the authors to a setting comprising two classes of users with different power constraints. Explicit rigorous closed-form analytical inner and outer bounds on the achievable rate (total class throughput) region in the large-system limit are derived and comparatively investigated in extreme-SNR regimes. The inner bound is based on the conditional vector entropy power inequality (EPI), while the outer bound relies on a recent strengthened version of the EPI. Valuable insights are provided into the potential performance gains of regular sparse NOMA in practically oriented settings, comprising, e.g., a combination of low-complexity devices and broadband users with higher transmit power capabilities, or combinations of cell-edge and cell-center users. The conditions for superior performance over dense code-domain NOMA (taking the form of randomly spread code-division multiple access), as well as a relatively small gap to the ultimate performance limits, are identified. The proposed bounds are also applicable for the analysis of interference networks, e.g., Wyner-type cellular models