25 research outputs found

    5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid

    Get PDF
    In the mol­ecule of the title compound, C10H9N3O2, the pyrazole ring is approximately coplanar with the amino and carboxyl groups. The phenyl group is twisted by 48.13 (3)° relative to this plane. An intra­molecular N—H⋯O hydrogen bond stabilizes the planar conformation of the mol­ecule. The mol­ecules are linked into two-dimensional sheets by two strong inter­molecular N—H⋯N and O—H⋯O hydrogen bonds. The latter forms the classic carboxylic acid dimer motif

    Pathobiology of Avian avulavirus 1:special focus on waterfowl

    Get PDF
    Avian avulaviruses serotype 1 (abbreviated as APMV-1 for the historical name avian paramyxovirus 1) are capable of infecting a wide spectrum of avian species with variable clinical symptoms and outcomes. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending upon the virus strain and host species. The emergence of new virulent genotypes from global epizootics, and the year-to-year genomic changes in low and high virulence APMV-1 imply that distinct genotypes of APMV-1 are simultaneously evolving at different geographic locations across the globe. This vast genomic diversity may be favoured by large variety of avian species susceptibility to APMV-1 infection, and by the availability of highly mobile wild birds. It has long been considered that waterfowls are not sensitive to APMV-1 and are unable to show any clinical signs, however, outbreaks from the 90's contradict these concepts. The APMV-1 isolates are increasingly reported from the waterfowl. Waterfowl have strong innate immune responses, which minimize the impact of virus infection, however, are unable to prevent the viral shedding. Numerous APMV-1 are carried by domestic waterfowl intermingling with terrestrial poultry. Therefore, commercial ducks and geese should be vaccinated against APMV-1 to minimize the virus shedding and for the prevention the transmission. Genetic diversity within APMV-1 demonstrates the need for continual monitoring of viral evolution and periodic updates of vaccine seed-strains to achieve efficient control and eradication of APMV-1 in waterfowls

    Newcastle disease virus induces testicular damage and disrupts steroidogenesis in specific pathogen free roosters

    Get PDF
    Newcastle disease (ND), which is caused by Newcastle disease virus (NDV), can cause heavy economic losses to the poultry industry worldwide. It is characterised by extensive pathologies of the digestive, respiratory, and nervous systems and can cause severe damage to the reproductive system of egg-laying hens. However, it is unknown whether NDV replicates in the male reproductive system of chickens and induces any pathologies. In this study, we selected a representative strain (i.e. ZJ1) of the most common genotype (i.e. VII) of NDV to investigate whether NDV can induce histological, hormonal, and inflammatory responses in the testes of specific pathogen free (SPF) roosters. NDV infection increased the expression of toll like receptor TLR3, TLR7, MDA5, IFN-α, IFN-β, IFN-γ, IL-8, and CXCLi1 in the testes of NDV-infected roosters at 5 days post-infection (dpi). Severe histological changes, including decrease in the number of Sertoli cells and individualized, shrunken spermatogonia with pyknotic nuclei, were observed at 3 dpi. At 5 dpi, the spermatogenic columns were disorganized, and there were fewer cells, which were replaced by necrotic cells, lipid vacuoles, and proteinaceous homogenous material. A significant decrease in the plasma concentrations of testosterone and luteinizing hormone (LH) and the mRNA expression of their receptors in the testes, steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in the NDV-infected group was observed relative to those in the control group (P < 0.05). Collectively, these results indicate that NDV infection induces a severe inflammatory response and histological changes, which decrease the steroidogenesis. © 2020 The Author(s)

    Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks

    Get PDF
    Newcastle disease (ND), caused by ND virus (NDV), is one of the most infectious and economically important diseases of the poultry industry worldwide. While infections are reported in a wide range of avian species, the pathogenicity of chicken-origin virulent NDV isolates in ducks remains elusive. In this study, two NDV strains were isolated and biologically and genetically characterized from an outbreak in chickens and apparently healthy ducks. Pathogenicity assessment indices, including the mean death time (MDT), intracerebral pathogenicity index (ICPI) and cleavage motifs in the fusion (F) protein, indicated that both isolates were velogenic in nature. While these isolates carried pathogenic characteristics, interestingly they showed differential pathogenicity in ducks. The chicken-origin isolate caused high (70%) mortality, whereas the duck-origin virus resulted in low (20%) mortality in 4-week-old ducks. Intriguingly, both isolates showed comparable disease pathologies in chickens. Full-genome sequence analysis showed that the virus genome contains 15 192 nucleotides and carried features that are characteristic of velogenic strains of NDV. A phylogenetic analysis revealed that both isolates clustered in class II and genotype VII. However, there were several mutations in the functionally important regions of the fusion (F) and haemagglutinin-neuraminidase (HN) proteins, which may be responsible for the differential pathogenicity of these viruses in ducks. In summary, these results suggest that NDV strains with the same genotype show differential pathogenicity in chickens and ducks. Furthermore, chicken-origin virulent NDVs are more pathogenic for ducks than duck-origin viruses. These findings propose a role for chickens in the evolution of viral pathogenicity and the potential genetic resistance of ducks to poultry viruses

    Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage

    Get PDF
    BACKGROUND/AIMS: Newcastle disease virus (NDV) causes a highly devastating and contagious disease in poultry, which is mainly attributed to extensive tissue damages in the digestive, respiratory and nervous systems. However, nature and dynamics of NDV-induced oxidative stresses in the intestine of chickens remain elusive. METHODS: In this study, we examined the magnitude of intestinal oxidative stress and histopathological changes caused by the virulent NDV infection, and explored the protective roles of vitamin E (vit. E) in ameliorating these pathological changes. For these purposes, chickens were divided into four groups namely i) non supplemented and non-challenged (negative control, CON); ii) no supplementation of vit. E but challenged with ZJ1 (positive control, NS+CHA); iii) vit. E supplementation at the dose of 50 IU/day/Kg body weight and ZJ1 challenge (VE50+CHA); and 4) vit. E supplementation at the dose of 100 IU/day/Kg body weight and ZJ1 challenge (VE100+CHA). In all groups, we analyzed concentrations of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (T-AOC), and activity of glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) using biochemical methods. The virus loads were determined by quantitative RT-PCR and antibody titers by hemagglutination inhibition assays. We also examined the histopathological changes in the duodenal and jejunal mucosa at 3 and 5-day post infection (dpi) with NDV. RESULTS: A significant elevation in the NO level was observed in NDV challenged chickens compared to the CON chickens at 2 dpi. The MDA contents were significantly increased whereas GSH was significantly decreased in NDV-challenged chickens compared to control. Furthermore, activities of GST, CAT, SOD, as well as the TOAC were markedly decreased in challenged chickens in comparison with control. Virus copy numbers were higher in NDV infected NS+CHA group compared to other groups. Severe histopathological changes including inflammation, degeneration and broken villi were observed in the intestine of NDV challenged chickens. However, all these malfunctions of antioxidant system and pathological changes in the intestine were partially or completely reversed by the vit. E supplementation. CONCLUSIONS: Our results suggest that NDV infection causes oxidative stress and histopathological changes in the duodenum and jejunum of chickens, which can be partially or fully ameliorated by supplementation of vit. E. Additionally, these findings suggest that oxidative stress contributes to the intestinal damages in NDV infected chickens. These findings will help to understand the pathogenesis of NDV and further investigation of therapeutic agents for control of Newcastle disease

    Optimal Octagonal Hooked Collar Countermeasure to Reduce Scour Around a Single Bridge Pier

    Get PDF
    Pier modification countermeasures are essential as they play a vital role in protecting pier against local scour action. Current study investigates experimentally the scour around vertical pier of octagonal cross section with pier modification such as newly proposed octagonal hooked collar is explored, in steady uniform state, under clear water condition. The results of pier scour without any modification were used as a reference to compute the efficiency of hooked collar provision around octagonal pier. The results show that by increasing the hooked collar width up to 2.5 Wp reduced maximum scour depth significantly. However, the experimental investigation revealed that the best combination to be with a hooked collar width of 2.5 Wp, having sidewall height 0.45 Wp. The best combination minimized around 73.3 % of scour hole depth, compared to octagonal pier without any modification. Using experimental results, a new equation is proposed to predict the scour depth around a bridge pier fitted with hooked collar. Moreover, a relation was developed for maximum scour depth and scour hole volume. Results indicate that the scour hole volume around a bridge pier increases quadratically with maximum scour depth

    Seasonal anatomical changes in the testis of the one-humped camel: a review REVIEW

    No full text
    SUMMARY The male camel shows sexual activity during specific days of the year (breeding or rutting period). This is influenced by testicular morphology which varies with the season of the year. These anatomical changes in the camel testis are well established, but some morphometric variations in the seminiferous tubules are still dubious. This article reviews the basic concepts of male camel reproduction with special reference to the seasonal anatomical changes in the testis

    Oxidative Stress in Poultry: Lessons from the Viral Infections

    No full text
    Reactive species (RS), generally known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are produced during regular metabolism in the host and are required for many cellular processes such as cytokine transcription, immunomodulation, ion transport, and apoptosis. Intriguingly, both RNS and ROS are commonly triggered by the pathogenic viruses and are famous for their dual roles in the clearance of viruses and pathological implications. Uncontrolled production of reactive species results in oxidative stress and causes damage in proteins, lipids, DNA, and cellular structures. In this review, we describe the production of RS, their detoxification by a cellular antioxidant system, and how these RS damage the proteins, lipids, and DNA. Given the widespread importance of RS in avian viral diseases, oxidative stress pathways are of utmost importance for targeted therapeutics. Therefore, a special focus is provided on avian virus-mediated oxidative stresses. Finally, future research perspectives are discussed on the exploitation of these pathways to treat viral diseases of poultry
    corecore