3 research outputs found

    <i>Ex vivo</i> explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies

    No full text
    Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.</p

    Examining the inequalities in cancer screening, prevention and service engagement between minority ethnic groups in the UK

    Full text link
    More people in the UK are living with cancer than ever before. With an increasingly ethnically diverse population, greater emphasis must be placed on understanding factors influencing cancer out comes. This review seeks to explore UK-specific variations in engagement with cancer services in minority ethnic groups and describe successful interventions. We wish to highlight that despite improvement to engagement and education strategies, inequalities still persist and work to improve cancer outcomes across our communities still needs to be prioritised. There are many reasons why cancer healthcare inequities exist for minority communities, reported on a spectrum ranging from cultural beliefs and awareness, through to racism. Strategies that successfully enhanced engagement included language support; culturally-sensitive reminders; community based health workers; targeted outreach. Focussing on the diverse city of Leicester we describe how healthcare providers, researchers and community champions have worked collectively, delivering targeted community-based strategies to improve awareness and access to cancer services

    An optimised patient-derived explant platform for breast cancer reflects clinical responses to chemotherapy and antibody-directed therapy

    No full text
    Breast Cancer is the most common cancer among women globally. Despite significant improvements in overall survival, many tumours are refractory to therapy and so novel approaches are required to improve patient outcomes. We have evaluated patient-derived explants (PDEs) as a novel preclinical platform for breast cancer (BC) and implemented cutting-edge digital pathology and multi-immunofluorescent approaches for investigating biomarker changes in both tumour and stromal areas at endpoint. Short-term culture of intact fragments of BCs as PDEs retained an intact immune microenvironment, and tumour architecture was augmented by the inclusion of autologous serum in the culture media. Cell death/proliferation responses to FET chemotherapy in BC-PDEs correlated significantly with BC patient progression-free survival (p = 0.012 and p = 0.0041, respectively) and cell death responses to the HER2 antibody therapy trastuzumab correlated significantly with HER2 status (p = 0.018). These studies show that the PDE platform combined with digital pathology is a robust preclinical approach for informing clinical responses to chemotherapy and antibody-directed therapies in breast cancer. Furthermore, since BC-PDEs retain an intact tumour architecture over the short-term, they facilitate the preclinical testing of anti-cancer agents targeting the tumour microenvironment.</p
    corecore