13 research outputs found

    Enhancement of Serological Immune Responses to Foot-and-Mouth Disease Vaccine by a Supplement Made of Extract of Cochinchina Momordica Seeds▿

    No full text
    Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals. Vaccination against FMD is a routine practice in many countries where the disease is endemic. This study was designed first to investigate the extract of the seeds of Momordica cochinchinensis (Lour.) Spreng. (ECMS) for its adjuvant effect on vaccination of inactivated FMDV antigens in a guinea pig model and then to evaluate the supplement of ECMS in oil-emulsified FMD vaccines for its immunopotentiation in pigs. The results indicated that ECMS and oil emulsion act synergistically as adjuvants to promote the production of FMDV- and VP1-specific immunoglobulin G (IgG) and subclasses in guinea pigs. A supplement of ECMS in a commercial FMD vaccine significantly enhanced FMDV-specific indirect hemagglutination assay titers as well as VP1-specific IgG and subclasses in pigs. Therefore, ECMS could be an alternative approach to improving swine FMD vaccination when the vaccine is poor to induce an effective immune response

    Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice

    No full text
    Deoxynivalenol (DON) is considered to be a grave threat to humans and animals. Ginsenoside Rb1 (Rb1) has been reported for its antioxidant potential and medicinal properties. However, the shielding effects of Rb1 and the precise molecular mechanisms against DON-induced immunotoxicity in mice have not been reported yet. In the present research, 4-weeks old healthy C57BL/6 mice were randomly assigned into four experimental groups (n = 12), viz., CON, DON 3 mg/kg BW, Rb1 50 mg/kg BW and DON 3 mg/kg + Rb1 50 mg/kg BW (DON + Rb1). Feed intake and body weight gain were monitored during the entire experiment (15 d). Our results demonstrated that Rb1 markedly increased the ADG (30%) and ADFI (25.10%) of mice compared with DON group. Furthermore, Rb1 alleviated the DON-induced immune injury by relieving the splenic histopathological alteration, enhancing the T-lymphocytes subsets (CD4+, CD8+), the levels of cytokines (IL-2, IL-6, IFN-γ, and TNF-α), as well as production of immunoglobulins (IgA, IgM, and IgG). Moreover, Rb1 ameliorated DON-inflicted oxidative stress by reducing the ROS, MDA and H2O2 contents and boosting the antioxidant defense system (T-AOC, T-SOD, CAT, and GSH-Px). Additionally, Rb1 significantly reversed the DON-induced excessive splenic apoptosis via modulating the mitochondria-mediated apoptosis pathway in mice, depicting the decreased percentage of splenocyte apoptotic cells by 26.65%, down-regulated the mRNA abundance of Bax, caspase-3, caspase-9, and protein expression of Bax, cleaved caspase-3, and Cyt-c. Simultaneously, Rb1 markedly rescued both Bcl-2 mRNA and protein expression levels. Taken together, Rb1 mitigates DON-induced immune injury by suppressing the oxidative damage and regulating the mitochondria-mediated apoptosis pathway in mice. Conclusively, our current research provides an insight into the preventive mechanism of Rb1 against DON-induced immune injury in mice and thus, presents a scientific baseline for the therapeutic application of Rb1

    Improvement of the efficacy of influenza vaccination (H5N1) in chicken by using extract of Cochinchina momordica seed (ECMS)

    No full text
    Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (H5N1) in chicken. Crude extraction from Cochinchina momordica seed (ECMS) was obtained by ethanol extraction method. In experiment No. 1, two weeks old chickens were immunized with influenza vaccine (H5N1) alone or combined with ECMS (5, 10, 20, 40 and 80 μg/dose). Serum IgG antibody levels (by ELISA) as well as effects on daily weight gain were measured on 0, 7, 14 and 28th day after immunization. Results revealed that all ECMS groups numerically increased the antibody levels while 10 and 20 μg/dose groups significantly (P<0.05) enhanced total IgG antibody on day 28, when compared with control. Average daily weight gain was also significantly higher in 20 μg/dose ECMS group. Adjuvant effect was also confirmed in experiment No. 2 when chickens were immunized with 20 μg/dose ECMS and antibody titer was measured through hemagglutination inhibition (HI). It is concluded that ECMS has potential to improve the immune responses and deserve further study as an adjuvant

    Study of cellulolytic soil fungi and two nova species and new medium

    No full text
    This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under sterilized conditions and incubated at 30 °C for 4 to 7 d. The identified fungal species were incubated in self-designed cellulose medium for testing their cellulolytic ability. Forty-two species, including 2 nova species, representing sixteen genera showed growth and sporulation in the cellulose medium. Most of the isolated species were from genus Aspergillus and Penicillium. Aspergillus niger and Mucor hiemalis showed highest occurrence frequency (45% and 36% respectively), as these species were collected from about 80% of soil samples. Being agar free and cheaper, the new fungal medium designed showed results equivalent to Sabouraud medium

    Importance of ticks and their chemical and immunological control in livestock

    No full text
    The medical and economic importance of ticks has long been recognized due to their ability to transmit diseases to humans and animals. Ticks cause great economic losses to livestock, and adversely affect livestock hosts in several ways. Loss of blood is a direct effect of ticks acting as potential vector for haemo-protozoa and helminth parasites. Blood sucking by large numbers of ticks causes reduction in live weight and anemia among domestic animals, while their bites also reduce the quality of hides. However, major losses caused by ticks are due to their ability to transmit protozoan, rickettsial and viral diseases of livestock, which are of great economic importance world-wide. There are quite a few methods for controlling ticks, but every method has certain shortcomings. The present review is focused on ticks importance and their control

    Adjuvant effects of saponins on animal immune responses

    No full text
    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed

    Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios. MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline. FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction. InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world. FundingBill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore