60 research outputs found

    Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased arterial stiffness is associated with mortality in patients with chronic kidney disease. Cardiovascular magnetic resonance (CMR) permits assessment of the central arteries to measure aortic function.</p> <p>Methods</p> <p>We studied the relationship between central haemodynamics and outcome using CMR in 144 chronic kidney disease patients with estimated glomerular filtration rate <15 ml/min (110 on dialysis). Aortic distensibilty and volumetric arterial strain were calculated from cross sectional aortic volume and pulse pressure measured during the scan.</p> <p>Results</p> <p>Median follow up after the scan was 24 months. There were no significant differences in aortic distensibilty or aortic volumetric arterial strain between pre-dialysis and dialysis patients. Aortic distensibilty and volumetric arterial strain negatively correlated with age. Aortic distensibilty and volumetric arterial strain were lower in diabetics, patients with ischaemic heart disease and peripheral vascular disease. During follow up there were 20 deaths. Patients who died had lower aortic distensibilty than survivors. In a survival analysis, diabetes, systolic blood pressure and aortic distensibilty were independent predictors of mortality. There were 12 non-fatal cardiovascular events during follow up. Analysing the combined end point of death or a vascular event, diabetes, aortic distensibilty and volumetric arterial strain were predictors of events.</p> <p>Conclusion</p> <p>Deranged vascular function measured with CMR correlates with cardiovascular risk factors and predicts outcome. CMR measures of vascular function are potential targets for interventions to reduce cardiovascular risk.</p

    Postdialysis blood pressure rise predicts long-term outcomes in chronic hemodialysis patients: a four-year prospective observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The blood pressure (BP) of a proportion of chronic hemodialysis (HD) patients rises after HD. We investigated the influence of postdialysis BP rise on long-term outcomes.</p> <p>Methods</p> <p>A total of 115 prevalent HD patients were enrolled. Because of the fluctuating nature of predialysis and postdialysis BP, systolic BP (SBP) and diastolic BP before and after HD were recorded from 25 consecutive HD sessions during a 2-month period. Patients were followed for 4 years or until death or withdrawal.</p> <p>Results</p> <p>Kaplan-Meier estimates revealed that patients with average postdialysis SBP rise of more than 5 mmHg were at the highest risk of both cardiovascular and all-cause mortality as compared to those with an average postdialysis SBP change between -5 to 5 mmHg and those with an average postdialysis SBP drop of more than 5 mmHg. Furthermore, multivariate Cox regression analysis indicated that both postdialysis SBP rise of more than 5 mmHg (HR, 3.925 [95% CI, 1.410-10.846], <it>p </it>= 0.008) and high cardiothoracic (CT) ratio of more than 50% (HR, 7.560 [95% CI, 2.048-27.912], <it>p </it>= 0.002) independently predicted all-cause mortality. We also found that patients with an average postdialysis SBP rise were associated with subclinical volume overload, as evidenced by the significantly higher CT ratio (<it>p </it>= 0.008).</p> <p>Conclusions</p> <p>A postdialysis SBP rise in HD patients independently predicted 4-year cardiovascular and all-cause mortality. Considering postdialysis SBP rise was associated with higher CT ratio, intensive evaluation of cardiac and volume status should be performed in patients with postdialysis SBP rise.</p

    Association of physical function with predialysis blood pressure in patients on hemodialysis

    Full text link
    BACKGROUND: New information from various clinical settings suggests that tight blood pressure control may not reduce mortality and may be associated with more side effects. METHODS: We performed cross-sectional multivariable ordered logistic regression to examine the association between predialysis blood pressure and the short physical performance battery (SPPB) in a cohort of 749 prevalent hemodialysis patients in the San Francisco and Atlanta areas recruited from July 2009 to August 2011 to study the relationship between systolic blood pressure and objective measures of physical function. Mean blood pressure for three hemodialysis sessions was analyzed in the following categories: <110 mmHg, 110-129 mmHg (reference), 130-159 mmHg, and ≥160 mmHg. SPPB includes three components: timed repeated chair stands, timed 15-ft walk, and balance tests. SPPB was categorized into ordinal groups (≤6, 7-9, 10-12) based on prior literature. RESULTS: Patients with blood pressure 130-159 mmHg had lower odds (OR 0.57, 95% CI 0.35-0.93) of scoring in a lower SPPB category than those whose blood pressure was between 110 and 129 mmHg, while those with blood pressure ≥160 mmHg had 0.56 times odds (95% CI 0.33-0.94) of scoring in a lower category when compared with blood pressure 110-129 mmHg. When individual components were examined, blood pressure was significantly associated with chair stand (130-159 mmHg: OR 0.59, 95% CI 0.38-0.92) and gait speed (≥160 mmHg: OR 0.59, 95% CI 0.35-0.98). Blood pressure ≥160 mmHg was not associated with substantially higher SPPB score compared with 130-159 mmHg. CONCLUSIONS: Patients with systolic blood pressure at or above 130 mmHg had better physical performance than patients with lower blood pressure in the normotensive range. The risk-benefit tradeoff of aggressive blood pressure control, particularly in low-functioning patients, should be reexamined

    Rationale and study design of the prospective, longitudinal, observational cohort study “rISk strAtification in end-stage renal disease” (ISAR) study

    Get PDF
    Background: The ISAR study is a prospective, longitudinal, observational cohort study to improve the cardiovascular risk stratification in endstage renal disease (ESRD). The major goal is to characterize the cardiovascular phenotype of the study subjects, namely alterations in micro-and macrocirculation and to determine autonomic function. Methods/design: We intend to recruit 500 prevalent dialysis patients in 17 centers in Munich and the surrounding area. Baseline examinations include: (1) biochemistry, (2) 24-h Holter Electrocardiography (ECG) recordings, (3) 24-h ambulatory blood pressure measurement (ABPM), (4) 24 h pulse wave analysis (PWA) and pulse wave velocity (PWV), (5) retinal vessel analysis (RVA) and (6) neurocognitive testing. After 24 months biochemistry and determination of single PWA, single PWV and neurocognitive testing are repeated. Patients will be followed up to 6 years for (1) hospitalizations, (2) cardiovascular and (3) non-cardiovascular events and (4) cardiovascular and (5) all-cause mortality. Discussion/conclusion: We aim to create a complex dataset to answer questions about the insufficiently understood pathophysiology leading to excessively high cardiovascular and non-cardiovascular mortality in dialysis patients. Finally we hope to improve cardiovascular risk stratification in comparison to the use of classical and non-classical (dialysis-associated) risk factors and other models of risk stratification in ESRD patients by building a multivariable Cox-Regression model using a combination of the parameters measured in the study

    Acute kidney injury in children

    Get PDF
    Acute kidney injury (AKI) (previously called acute renal failure) is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. The incidence of AKI in children appears to be increasing, and the etiology of AKI over the past decades has shifted from primary renal disease to multifactorial causes, particularly in hospitalized children. Genetic factors may predispose some children to AKI. Renal injury can be divided into pre-renal failure, intrinsic renal disease including vascular insults, and obstructive uropathies. The pathophysiology of hypoxia/ischemia-induced AKI is not well understood, but significant progress in elucidating the cellular, biochemical and molecular events has been made over the past several years. The history, physical examination, and laboratory studies, including urinalysis and radiographic studies, can establish the likely cause(s) of AKI. Many interventions such as ‘renal-dose dopamine’ and diuretic therapy have been shown not to alter the course of AKI. The prognosis of AKI is highly dependent on the underlying etiology of the AKI. Children who have suffered AKI from any cause are at risk for late development of kidney disease several years after the initial insult. Therapeutic interventions in AKI have been largely disappointing, likely due to the complex nature of the pathophysiology of AKI, the fact that the serum creatinine concentration is an insensitive measure of kidney function, and because of co-morbid factors in treated patients. Improved understanding of the pathophysiology of AKI, early biomarkers of AKI, and better classification of AKI are needed for the development of successful therapeutic strategies for the treatment of AKI

    Prevention of acute kidney injury and protection of renal function in the intensive care unit

    Get PDF
    Acute renal failure on the intensive care unit is associated with significant mortality and morbidity. To determine recommendations for the prevention of acute kidney injury (AKI), focusing on the role of potential preventative maneuvers including volume expansion, diuretics, use of inotropes, vasopressors/vasodilators, hormonal interventions, nutrition, and extracorporeal techniques. A systematic search of the literature was performed for studies using these potential protective agents in adult patients at risk for acute renal failure/kidney injury between 1966 and 2009. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, and use of potentially nephrotoxic drugs and radiocontrast media. Where possible the following endpoints were extracted: creatinine clearance, glomerular filtration rate, increase in serum creatinine, urine output, and markers of tubular injury. Clinical endpoints included the need for renal replacement therapy, length of stay, and mortality. Studies are graded according to the international Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) group system Several measures are recommended, though none carries grade 1A. We recommend prompt resuscitation of the circulation with special attention to providing adequate hydration whilst avoiding high-molecular-weight hydroxy-ethyl starch (HES) preparations, maintaining adequate blood pressure using vasopressors in vasodilatory shock. We suggest using vasopressors in vasodilatory hypotension, specific vasodilators under strict hemodynamic control, sodium bicarbonate for emergency procedures administering contrast media, and periprocedural hemofiltration in severe chronic renal insufficiency undergoing coronary intervention
    corecore