1,018 research outputs found

    Custom-made implants for massive acetabular bone loss: accuracy with CT assessment

    Get PDF
    Background: Custom-made implants are a valid option in revision total hip arthroplasty to address massive acetabular bone loss. The aim of this study was to assess the accuracy of custom-made acetabular implants between preoperative planning and postoperative positioning using CT scans. Methods: In a retrospective analysis, three patients who underwent an acetabular custom-made prosthesis were identified. The custom-made designs were planned through 3D CT analysis considering surgical points of attention. The accuracy of intended implants positioning was assessed by comparing pre- and postoperative CT analyzing the center of rotation (CoR), anteversion, inclination, screws, and implant surface in contact with the bone. Results: The three cases presented satisfactory accuracy in positioning. A malpositioning in the third case was observed due to the posterization of the CoR of the implant of more than 10 mm. The other CoR vectors considered in the third patient and all vectors in the other two cases fall within 10 mm. All the cases were positioned with a difference of less than 10° of anteversion and inclination with respect to the planning. Conclusions: The current case series revealed promising accuracy in the positioning of custom-made acetabular prosthesis comparing the planned implant in preoperative CT with postoperative CT

    Dark complexes of the Calvin-Benson cycle in a physiological perspective

    Get PDF
    : Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two enzymes of the Calvin Benson cycle that stand out for some peculiar properties they have in common: (i) they both use the products of light reactions for catalysis (NADPH for GAPDH, ATP for PRK), (ii) they are both light-regulated through thioredoxins and (iii) they are both involved in the formation of regulatory supramolecular complexes in the dark or low photosynthetic conditions, with or without the regulatory protein CP12. In the complexes, enzymes are transiently inactivated but ready to recover full activity after complex dissociation. Fully active GAPDH and PRK are in large excess for the functioning of the Calvin-Benson cycle, but they can limit the cycle upon complex formation. Complex dissociation contributes to photosynthetic induction. CP12 also controls PRK concentration in model photosynthetic organisms like Arabidopsis thaliana and Chlamydomonas reinhardtii. The review combines in vivo and in vitro data into an integrated physiological view of the role of GAPDH and PRK dark complexes in the regulation of photosynthesis

    Fractional order hereditariness of knee human ligament and tendon

    Get PDF
    Anterior Cruciate Ligament (ACL) is one of the four major ligaments in the knee, playing a critical role in stabilizing the joint. ACL is highly susceptible to injury, overall during sport activities, often precipitating catastrophic long-term joint outcomes. The ideal replacement graft for a torn ACL would restore native anatomy and function to the knee. Most commonly used autograft and allograft, including patellar tendon (P) and hamstring tendon (H) graft, or bioengineered synthetic grafts, may substantially alter the biomechanics of the knee, permitting a return to only moderate physical activities [1]. Main issues are the sub-optimal graft properties [2] and a still incomplete biomechanics characterization [1]. The goal of the present work is to fully characterize and compare the viscoelastic behavior of the ACL and natural/artificial grafts in order to highlight the differences that should be overcome to achieve a successful biomechanical performance and an ideal graft design

    Case Report: Anterior Cruciate Ligament Calcification in a Patient With Chondrocalcinosis: Micro-Computed Tomography Presentation

    Get PDF
    In this case report, an incidental postoperative diagnosis of anterior cruciate ligament (ACL) calcification, associated with calcification of posterior cruciate ligament (PCL) and lateral meniscus insertions, was made using micro-computed tomography (μCT) technology in a knee specimen obtained during a total knee replacement (TKR) surgery due to painful tri-compartmental osteoarthritis (OA) with chondrocalcinosis signs at preoperative X-ray. Anterior cruciate ligament calcification is an uncommon finding, and conventional X-ray and MRI are not so helpful in its identification. μCT scan, in contrast, is of interest because it provides highly spatial three-dimensional information with excellent visualization of bones and calcifications. The μCT technology used in this case report allowed us to perform a detailed analysis and a 3-D reconstruction of the calcium pyrophosphate dihydrate (CPPD) crystal deposition about the knee without the need to section the specimens into slice as performed in previous studies. The 3-D model obtained with μCT scan permits to gain more insight into the shape of the calcification within the fibers of the ligamentous structures of the joint

    Complications of Tranexamic Acid in Orthopedic Lower Limb Surgery: A Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Objective. Tranexamic acid (TXA) is increasingly used in orthopedic surgery to reduce blood loss; however, there are concerns about the risk of venous thromboembolic (VTE) complications. The aim of this study was to evaluate TXA safety in patients undergoing lower limb orthopedic surgical procedures. Design. A meta-analysis was performed on the PubMed, Web of Science, and Cochrane Library databases in January 2020 using the following string (Tranexamic acid) AND ((knee) OR (hip) OR (ankle) OR (lower limb)) to identify RCTs about TXA use in patients undergoing every kind of lower limb surgical orthopedic procedures, with IV, IA, or oral administration, and compared with a control arm to quantify the VTE complication rates. Results. A total of 140 articles documenting 9,067 patients receiving TXA were identified. Specifically, 82 studies focused on TKA, 41 on THA, and 17 on other surgeries, including anterior cruciate ligament reconstruction, intertrochanteric fractures, and meniscectomies. The intravenous TXA administration protocol was studied in 111 articles, the intra-articular in 45, and the oral one in 7 articles. No differences in terms of thromboembolic complications were detected between the TXA and control groups neither in the overall population (2.4% and 2.8%, respectively) nor in any subgroup based on the surgical procedure and TXA administration route. Conclusions. There is an increasing interest in TXA use, which has been recently broadened from the most common joint replacement procedures to the other types of surgeries. Overall, TXA did not increase the risk of VTE complications, regardless of the administration route, thus supporting the safety of using TXA for lower limb orthopedic surgical procedures

    Clinical radiographical outcomes and complications after a brand-new total ankle replacement design through an anterior approach: A retrospective at a short-term follow up

    Get PDF
    Recently, the progress in techniques and in projecting new prosthetic designs has allowed increasing indications for total ankle replacement (TAR) as treatment for ankle osteoarthritis. This retrospective work comprehended 39 subjects aged between 47 and 79 years old. The patients, observed for at least 12 months (mean follow up of 18.2 ± 4.1 months), have been evaluated according to clinical and radiological parameters, both pre-and post-operatively. The AOFAS and VAS score significantly improved, respectively, from 46.2 ± 4.8 to 93.9 ± 4.1 and from 7.1 ± 1.1 to 0.7 ± 0.5 (p value < 0.05). At the final evaluation, the mean plantarflexion passed from 12.2◦ ± 2.3◦ to 18.1◦ ± 2.4◦ (p value < 0.05) and dorsiflexion from a pre-operative mean value of 8.7◦ ± 4.1◦ to 21.7◦ ± 5.4◦ post-operatively (p value < 0.05). This study found that this new total ankle replacement design is a safe and effective procedure for patients effected by end-stage ankle osteoarthritis. Improvements have been demonstrated in terms of range of motion, radiographic parameters and patient-reported outcomes. However, further studies are needed to assess the long-term performance of these prostheses

    A computer simulation protocol to assess the accuracy of a Radio Stereometric Analysis (RSA) image processor according to the ISO-5725

    Full text link
    Radio-Stereometric-Analysis and x-ray fluoroscopy are radiological techniques that require dedicated software to process data. The accurate calibration of these software is therefore critical. The aim of this work is to produce a protocol for evaluating the softwares' accuracy according to the ISO-5725. A series of computer simulations of the radiological setup and images were employed. The noise level of the images was also changed to evaluate the accuracy with different image qualities. The protocol was tested on a custom software developed by the authors. Radiological scene reconstruction accuracy was of (0.092 +- 0.14) mm for tube position, and (0.38 +- 0.31) mm / (2.09 +- 1.39) deg for detectors oriented in a direction other than the source-detector direction. In the source-detector direction the accuracy was of (2.68 +- 3.08) mm for tube position, and of (0.16 +- 0.27) mm / (0.075 +- 1.16) deg for the detectors. These disparate results are widely discussed in the literature. Model positioning and orientation was also highly accurate: (0.22 +- 0.46) mm / (0.26 +- 0.22) deg. Accuracy was not affected by the noise level. The protocol was able to assess the accuracy of the RSA system. It was also useful to detect and fix hidden bugs. It was also useful to detect and resolve hidden bugs in the software, and in optimizing the algorithms

    Patient-reported outcome measures (PROMs) after elective hip, knee and shoulder arthroplasty: Protocol for a prospective cohort study

    Get PDF
    Background The number of hip, knee and shoulder arthroplasties continues to rise worldwide. The Organization for Economic Cooperation and Development has launched an initiative (called PaRIS Initiative) for the systematic collection of Patient Reported Outcome Measures (PROMs) in patients undergoing elective hip and knee arthroplasty. The Rizzoli Orthopedic Institute (IOR) was selected as a pilot center for the launch of the Initiative in Italy given that IOR hosts the Registry of Orthopedic Prosthetic Implants (RIPO), a region-wide registry which collects joint implant data from all the hospitals in the Emilia-Romagna Region. In this specific geographic area information related to PROMs after joint replacement is unknown. This paper describes the protocol of a study (PaRIS-IOR) that aims to implement the collection of a set of PROMs within an existing implant registry in Italy. The study will also investigate the temporal trend of PROMs in relation to the type of prosthesis and the type of surgical intervention. Methods The PaRIS-IOR study is a prospective, single site, cohort study that consists of the administration of PROMs questionnaires to patients on the list for elective arthroplasty. The questionnaires will be administered to the study population within 30 days before surgery, and then at 6 and 12 months following surgery. The study population will consist of consecutive adult patients undergoing either hip, knee or shoulder arthroplasty. The collected data will be linked with those routinely collected by the RIPO in order to assess the temporal trend of PROMs in relation to the type of prosthesis and the type of surgical intervention. Discussion The PaRIS-IOR study could have important implications in targeting the factors influencing functional outcomes and quality of life reported by patients after hip, knee and shoulder arthroplasty, and will also represent the first systematic collection of PROMs related to arthroplasty in Italy

    Phosphoribulokinase abundance is not limiting the Calvin-Benson-Bassham cycle in Chlamydomonas reinhardtii

    Get PDF
    Improving photosynthetic efficiency in plants and microalgae is of utmost importance to support the growing world population and to enable the bioproduction of energy and chemicals. Limitations in photosynthetic light conversion efficiency can be directly attributed to kinetic bottlenecks within the Calvin-Benson-Bassham cycle (CBBC) responsible for carbon fixation. A better understanding of these bottlenecks in vivo is crucial to overcome these limiting factors through bio-engineering. The present study is focused on the analysis of phosphoribulokinase ( PRK) in the unicellular green alga Chlamydomonas reinhardtii. We have characterized a PRK knock-out mutant strain and showed that in the absence of PRK, Chlamydomonas cannot grow photoautotrophically while functional complementation with a synthetic construct allowed restoration of photoautotrophy. Nevertheless, using standard genetic elements, the expression of PRK was limited to 40% of the reference level in complemented strains and could not restore normal growth in photoautotrophic conditions suggesting that the CBBC is limited. We were subsequently able to overcome this initial limitation by improving the design of the transcriptional unit expressing PRK using diverse combinations of DNA parts including PRK endogenous promoter and introns. This enabled us to obtain strains with PRK levels comparable to the reference strain and even overexpressing strains. A collection of strains with PRK levels between 16% and 250% of WT PRK levels was generated and characterized. Immunoblot and growth assays revealed that a PRK content of approximate to 86% is sufficient to fully restore photoautotrophic growth. This result suggests that PRK is present in moderate excess in Chlamydomonas. Consistently, the overexpression of PRK did not increase photosynthetic growth indicating that that the endogenous level of PRK in Chlamydomonas is not limiting the Calvin-Benson-Bassham cycle under optimal conditions

    Two-Dimensional and Three-Dimensional Biomechanical Factors During 90° Change of Direction are Associated to Non-Contact ACL injury in Female Soccer Players

    Get PDF
    Background The two-dimensional (2D) video-analysis of the change of direction (COD) technique has never been used to attempt to predict the risk of ACL injury in female football players. Hypothesis/Purpose The purpose of the present pilot study was to prospectively investigate the biomechanical predictors of ACL injury during a COD task in female football players using both gold standard 3D motion capture and a qualitative scoring system based on 2D video-analysis. Study Design Prospective cohort study Methods Sixteen competitive female football (soccer) players (age 21.4 ± 4.3) performed a series of pre-planned 90° COD tasks. 3D motion data was recorded through 10 stereophotogrammetric cameras and a force platform. 2D frontal and transverse plane joint kinematics were computed through video-analysis from three high-speed cameras. A scoring system based on five criteria was adopted: limb stability, pelvis stability, trunk stability, shock absorption, and movement strategy. The players were prospectively followed for the next two consecutive football seasons and the occurrence of severe knee injuries was registered. Results Four players (25%) experienced an ACL injury. In 3D analysis, ACL-injured players showed greater knee valgus, knee internal rotation, and lower knee flexion (p= 0.017 – 0.029). Lower hip flexion coupled with greater external rotation (p= 0.003 – 0.042), ankle eversion, and contralateral pelvic drop (p<0.001) were also noted. In 2D analysis, ACL-injured players showed greater internal foot rotation, contralateral pelvic drop, lower knee flexion, and contralateral trunk tilt (moderate-to-large effect size). Pelvis stability and trunk stability showed the highest predictive value towards ACL injury. Total score was significantly lower in ACL-injured players with a moderate effect size (d=0.45). Conclusions Both 3D and 2D methodologies depicted biomechanical risk factors and offered predictive insights towards the ACL injury risk. Awareness should rise in women’s football regarding the high risk of ACL injury and the strategies to assess and mitigate it
    • …
    corecore