285 research outputs found

    Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment

    No full text
    Alloys play a crucial role in several heterogeneous catalytic processes, and their applications are expected to rise rapidly. This is essentially related to the vast number of configurations and type of surface sites that multi-component materials can afford. It is well established that the chemical composition at the surface of an alloy usually differs from that in the bulk. This phenomenon, referred to as surface segregation, is largely controlled by the surface free energy. However, surface energy alone cannot safely predict the active surface state of a solid catalyst, since the contribution of other parameters such as size and support effects, as well as influence of the adsorbates, play a major role. This can lead to numerous surface configurations as for example over the length of a catalytic reactor, as the chemical potential of the gas phase changes continuously over the catalyst bed and hence different reactions may prevail at different catalyst bed segments. Thanks to the rapid improvement of the analytical surface science characterization techniques and theoretical methodologies, the potential effects induced by alloyed catalysts are better understood. For catalysis, the relevance of measurements performed on well-defined surfaces under idealized ultrahigh vacuum conditions has been questioned and studies in environments that closely resemble conditions of working alloy catalysts are needed. In this review we focus on experimental and theoretical studies related to in situ (operando) observations of surface segregation and phase separation phenomena taking place on the outermost surface layers of alloy catalysts. The combination of first principles theoretical treatment and in situ observation opens up new perspectives of designing alloy catalysts with tailored properties

    The role of carbon species in heterogeneous catalytic processes: an in situ soft x-ray photoelectron spectroscopy study

    Get PDF
    High pressure X-ray photoelectron spectroscopy (XPS) is used to characterize heterogeneous catalytic processes. The success of the new technique based on the possibility to correlate the catalytic activity and the electronic structure of an active surface. The dynamic character of a catalyst surface can be demonstrated impressively by this technique. In this contribution the basics of high pressure XPS will be discussed. Three examples of heterogeneous catalytic reactions are presented in this contribution. The selective hydrogenation of 1-pentyne over Pd based catalysts and the dehydrogenation of n-butane and the oxidation of ethylene over V based catalysts. It is shown, that the formation of subsurface carbons plays an important role in all the examples. The incorporated carbon changes the electronic structure of the surface and so controls the selectivity of the reaction. A change of the educts in the reaction atmosphere induces modifications of the electronic surface structure of the operation catalysts

    Dehydrogenation and Oxidative Dehydrogenation of n-Butane using Vanadium Based Catalysts: an in situ XPS study

    Get PDF
    The surface electronic structure of VxOy/alumina catalysts (1-8 wt% V) was investigated using high pressure in situ XPS and XAS. Link between the electronic structure of vanadium and catalytic activity was established

    Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity

    No full text
    X-ray photoelectron and absorption spectroscopies (XPS and XAS) combined with on-line mass spectrometry were applied under working catalytic conditions to investigate the methanol oxidation on cobalt. Two cobalt oxidation states (Co3O4 and CoO) were prepared and investigated as regards their influence on the catalytic activity and selectivity. In addition adsorbed species were monitored in the transition of the catalyst from the non-active to the active state. It was unequivocally shown that the surface oxidation state of cobalt is readily adapted to the oxygen chemical potential in the CH3OH/O2 reaction mixture. In particular, even in rich to oxygen mixtures the Co3O4 surface is partially reduced, while the degree of surface reduction is higher as the methanol concentration in the mixture increases. The reaction selectivity depends on the cobalt oxidation state with the more reduced samples favouring the partial oxidation of methanol to formaldehyde. In the absence of oxygen, methanol is effectively reducing cobalt to the metallic state, promoting also hydrogen and CO production. Direct evidence of methoxy and formate species adsorbed on the surface upon reaction was found by analysing the O 1s and C 1s photoelectron spectra. However, the surface coverage of those species was not proportional to the catalytic activity, indicating that in the absence of surface oxygen, these species might act also as reaction inhibitors
    • …
    corecore