55 research outputs found

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease

    Get PDF
    BACKGROUND: Free radical scavengers have failed to improve patient outcomes, promoting the concept that clinically important oxidative stress may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of nonfree radical mediated oxidative stress with clinical outcomes. METHODS AND RESULTS: Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7 ± 2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (P+1 SD and <-1 SD, respectively) were associated with higher mortality (adjusted hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.19-2.21; HR, 2.19; 95% CI, 1.50-3.19; respectively) compared with those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR, 1.92; 95% CI, 1.39-2.64) and was independent of and additive to high-sensitivity C-reactive protein level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction. CONCLUSIONS: A high burden of oxidative stress, quantified by the plasma aminothiols, cystine, glutathione, and their ratio, is associated with mortality in patients with coronary artery disease, a finding that is independent of and additive to the inflammatory burden. Importantly, these data support the emerging role of nonfree radical biology in driving clinically important oxidative stress

    Losartan Improved Antioxidant Defense, Renal Function and Structure of Postischemic Hypertensive Kidney

    Get PDF
    Ischemic acute renal failure (ARF) is a highly complex disorder involving renal vasoconstriction, filtration failure, tubular obstruction, tubular backleak and generation of reactive oxygen species. Due to this complexity, the aim of our study was to explore effects of Angiotensin II type 1 receptor (AT1R) blockade on kidney structure and function, as well as oxidative stress in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. Experiments were performed on anaesthetized adult male SHR in the model of ARF with 40 minutes clamping the left renal artery. The right kidney was removed and 40 minutes renal ischemia was performed. Experimental groups received AT1R antagonist (Losartan) or vehicle (saline) in the femoral vein 5 minutes before, during and 175 minutes after the period of ischemia. Biochemical parameters were measured and kidney specimens were collected 24h after reperfusion. ARF significantly decreased creatinine and urea clearance, increased LDL and lipid peroxidation in plasma. Treatment with losartan induced a significant increase of creatinine and urea clearance, as well as HDL. Lipid peroxidation in plasma was decreased and catalase enzyme activity in erythrocytes was increased after losartan treatment. Losartan reduced cortico-medullary necrosis and tubular dilatation in the kidney. High expression of pro-apoptotic Bax protein in the injured kidney was downregulated after losartan treatment. Our results reveal that angiotensin II (via AT1R) mediates the most postischemic injuries in hypertensive kidney through oxidative stress enhancement. Therefore, blockade of AT1R may have beneficial effects in hypertensive patients who have developed ARF

    Smoking Dose Modifies the Association between C242T Polymorphism and Prevalence of Metabolic Syndrome in a Chinese Population

    Get PDF
    Background: The C242T polymorphism of the CYBA gene that encodes p22phox, a component of NADPH oxidase, has been found to modulate superoxide production. Oxidase is a major source of the superoxide anion that contributes to individual components of metabolic syndrome. We examined the relationship of the C242T polymorphism with the prevalence of metabolic syndrome in a Chinese population, taking account of consumed cigarette amounts. Methodology/Principal Findings: In 870 participants, we collected biomarkers related to metabolic syndrome and detailed history of smoking and genotyped the C242T polymorphisms. After adjustment for covariates, the CT/TT genotypes were associated with a lower risk of metabolic syndrome (P = 0.0008). The odds of having metabolic syndrome in the CT/TT participants were 0.439 (95%CI: 0.265, 0.726), while for CC participants the odds were 1.110 (95%CI: 0.904, 1.362). There was significant (P = 0.014) interaction between the C242T polymorphism and smoking status in relation to the prevalence of metabolic syndrome. For smokers who smoke no less than 25 pack-years, those with CT/TT genotypes had lower risk of metabolic syndrome as compared with CC polymorphism carriers (P = 0.015). In the multiple regression analysis, the CT/TT genotypes were significantly associated with lower serum concentration of triglycerides both in all subjects and smokers; furthermore, the CT/TT genotypes were also related to smaller waist circumference in smokers. Conclusions: Our study suggests that the C242T gene polymorphism is indeed related to the prevalence of metaboli

    Direct Sensing of Endothelial Oxidants by Vascular Endothelial Growth Factor Receptor-2 and c-Src

    Get PDF
    BACKGROUND: ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis 'senses' NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs. METHODOLOGY/PRINCIPAL FINDINGS: Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47(phox) subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS. CONCLUSION/SIGNIFICANCE: These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can 'sense' redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs
    corecore