113 research outputs found

    Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness.

    Get PDF
    Natural materials, such as nacre and silk, exhibit both high strength and toughness due to their hierarchical structures highly organized at the nano-, micro-, and macroscales. Bacterial cellulose (BC) presents a hierarchical fibril structure at the nanoscale. At the microscale, however, BC nanofibers are distributed randomly. Here, BC self-assembles into a highly organized spiral honeycomb microstructure giving rise to a high tensile strength (315 MPa) and a high toughness value (17.8 MJ m-3), with pull-out and de-spiral morphologies observed during failure. Both experiments and finite-element simulations indicate improved mechanical properties resulting from the honeycomb structure. The mild fabrication process consists of an in situ fermentation step utilizing poly(vinyl alcohol), followed by a post-treatment including freezing-thawing and boiling. This simple self-assembly production process is highly scalable, does not require any toxic chemicals, and enables the fabrication of light, strong, and tough hierarchical composite materials with tunable shape and size

    The response of human macrophages to 3D printed titanium antibacterial implants does not affect the osteogenic differentiation of hMSCs

    Get PDF
    Macrophage responses following the implantation of orthopaedic implants are essential for successful implant integration in the body, partly through intimate crosstalk with human marrow stromal cells (hMSCs) in the process of new bone formation. Additive manufacturing (AM) and plasma electrolytic oxidation (PEO) in the presence of silver nanoparticles (AgNPs) are promising techniques to achieve multifunctional titanium implants. Their osteoimmunomodulatory properties are, however, not yet fully investigated. Here, we studied the effects of implants with AgNPs on human macrophages and the crosstalk between hMSCs and human macrophages when co-cultured in vitro with biofunctionalised AM Ti6Al4V implants. A concentration of 0.3 g/L AgNPs in the PEO electrolyte was found to be optimal for both macrophage viability and inhibition of bacteria growth. These specimens also caused a decrease of the macrophage tissue repair related factor C-C Motif Chemokine Ligand 18 (CCL18). Nevertheless, co-cultured hMSCs could osteogenically differentiate without any adverse effects caused by the presence of macrophages that were previously exposed to the PEO (±AgNPs) surfaces. Further evaluation of these promising implants in a bony in vivo environment with and without infection is highly recommended to prove their potential for clinical use.</p

    Synthetic Polymers Provide a Robust Substrate for Functional Neuron Culture

    Get PDF
    Substrates for neuron culture and implantation are required to be both biocompatible and display surface compositions that support cell attachment, growth, differentiation, and neural activity. Laminin, a naturally occurring extracellular matrix protein is the most widely used substrate for neuron culture and fulfills some of these requirements, however, it is expensive, unstable (compared to synthetic materials), and prone to batch-to-batch variation. This study uses a high-throughput polymer screening approach to identify synthetic polymers that supports the in vitro culture of primary mouse cerebellar neurons. This allows the identification of materials that enable primary cell attachment with high viability even under “serum-free” conditions, with materials that support both primary cells and neural progenitor cell attachment with high levels of neuronal biomarker expression, while promoting progenitor cell maturation to neurons.Biomaterials & Tissue Biomechanic

    Patient‐specific 3D‐printed shelf implant for the treatment of hip dysplasia: anatomical and biomechanical outcomes in a canine model

    Get PDF
    A solution for challenging hip dysplasia surgery could be a patient-specific 3D-printed shelf implant that is positioned extra-articular and restores the dysplastic acetabular rim to normal anatomical dimensions. The anatomical correction and biomechanical stability of this concept were tested in a canine model that, like humans, also suffers from hip dysplasia. Using 3D reconstructed computed tomography images the 3D shelf implant was designed to restore the radiological dysplastic hip parameters to healthy parameters. It was tested ex vivo on three dog cadavers (six hips) with hip dysplasia. Each hip was subjected to a biomechanical subluxation test, first without and then with the 3D shelf implant in place. Subsequently, an implant failure test was performed to test the primary implant fixation. At baseline, the dysplastic hips had an average Norberg angle of 88 ± 3° and acetabular coverage of 47 ± 2% and subluxated at an average of 83 ± 2° of femoral adduction. After adding the patient-specific shelf implants the dysplastic hips had an average Norberg angle of 122 ± 2° and acetabular coverage of 67 ± 3% and subluxated at an average of 117 ± 2° of femoral adduction. Implant failure after primary implant fixation occurred at an average of 1330 ± 320 Newton. This showed that the patient-specific shelf implants significantly improved the coverage and stability of dysplastic hips in a canine model with naturally occurring hip dysplasia. The 3D shelf is a promising concept for treating residual hip dysplasia with a straightforward technology-driven approach; however, the clinical safety needs to be further investigated in an experimental proof-of-concept animal study

    Submicron patterns-on-a-chip: Fabrication of a microfluidic device incorporating 3D printed surface ornaments

    Get PDF
    Manufacturing high throughput in vitro models resembling the tissue microenvironment is highly demanded for studying bone regeneration. Tissues such as bone have complex multiscale architectures insid

    On bone fatigue and its relevance for the design of architected materials

    No full text
    corecore