85 research outputs found

    Fabrication and optimization of electrospun polyacrylonitrile nanofiber for application in air filtration

    Get PDF
    Background and aims: In nanofibrous filters, morphological properties, diameter of fibers and porosity percent of media are the most filtration characteristics. Therefore, the present study aimed to optimize the electrospinning parameters for reaching to the desired values of the mentioned filter characteristics. Methods: For this purpose, a study design was prepared using response surface methodology (RSM), in which electrospinning factors such as solution concentration, applied voltage and electrospinning distance were considered input variables and the fiber diameter, porosity, bead number and average bead diameter to average fiber diameter (ABD/AFD) ratio were considered the output variables. Morphological features of fibers and porosity of media were done through image processing approach of Scanning Emission Microscopy (SEM) images. Results: Maximum concentration in assessed range can provide the best morphology and also the maximum diameter. The highest correlation coefficient has been seen between fiber diameter and solution concentration (p 0.05, r=0.39). There was the significant relationship between both concentration and electrospinning distance and bead size (r=-1.6, r=0.56, respectively). Bead number was decreased specially with increase in concentration. Conclusion: Totally, RSM could well determine the relationship between input and response variables. High regression coefficient in mathematical models indicated the importance of the experimental values. The validation test shown the experimental data are in good agreement with the predicted ones

    Bone microarchitecture in transgender adults: a cross-sectional study

    Get PDF
    First published: 03 January 2022Gender-affirming hormone therapy aligns physical characteristics with an individual’s gender identity, but sex hormones regulate bone remodeling and influence bonemorphology. Wehypothesized that transmen receiving testosterone have compromised bonemorphology because of suppression of ovarian estradiol production, whereas trans women receiving estradiol, with or without anti-androgen therapy, have preserved bonemicroarchitecture.We compared distal radial and tibial microarchitecture using high-resolution peripheral quantitative computed tomography images in a cross-sectional study of 41 trans men with 71 cis female controls, and 40 trans women with 51 cismale controls. Between-group differences were expressed as standardized deviations (SD) fromthemean in age-matched cisgender controls with 98% confidence intervals adjusted for cross-sectional area (CSA) and multiple comparisons. Relative to cis women, trans men had 0.63 SD higher total volumetric bone mineral density (vBMD; both p = 0.01). Cortical vBMD and cortical porosity did not differ, but cortices were 1.11 SD thicker (p < 0.01). Trabeculae were 0.38 SD thicker (p = 0.05) but otherwise no different. Compared with cismen, trans women had 0.68 SD lower total vBMD (p=0.01). Cortical vBMD was 0.70 SD lower (p < 0.01), cortical thicknesswas 0.51 SD lower (p = 0.04), and cortical porosity was 0.70 SD higher (p < 0.01). Trabecular bone volume (BV/TV) was 0.77 SD lower (p < 0.01),with 0.57 SD fewer (p < 0.01) and 0.30 SD thicker trabeculae (p = 0.02). There was 0.56 SD greater trabecular separation (p = 0.01). Findings at the distal radius were similar. Contrary to each hypothesis, bonemicroarchitecture was not compromised in trans men, perhaps because aromatization of administered testosterone prevented bone loss. Trans women had deteriorated bone microarchitecture either because of deficits in microstructure before treatment or because the estradiol dosage was insufficient to offset reduced aromatizable testosterone. Prospective studies are needed to confirm these findings.Ingrid Bretherton, Ali Ghasem-Zadeh, Shalem Y Leemaqz, Ego Seeman, Xiaofang Wang, Thomas McFarlane, Cassandra Spanos, Mathis Grossmann, Jeffrey D Zajac, and Ada S Cheun

    On the Quasi-Linear Elliptic PDE (u/1u2)=4πkakδsk-\nabla\cdot(\nabla{u}/\sqrt{1-|\nabla{u}|^2}) = 4\pi\sum_k a_k \delta_{s_k} in Physics and Geometry

    Full text link
    It is shown that for each finite number of Dirac measures supported at points sns_n in three-dimensional Euclidean space, with given amplitudes ana_n, there exists a unique real-valued Lipschitz function uu, vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form (u/1u2)=4πn=1Nanδsn-\nabla\cdot(\nabla{u}/\sqrt{1-|\nabla{u}|^2})=4\pi\sum_{n=1}^N a_n \delta_{s_n}. Moreover, uu is real analytic away from the sns_n. The result can be interpreted in at least two ways: (a) for any number of point charges of arbitrary magnitude and sign at prescribed locations sns_n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as s|s|\to\infty; (b) for any number of integral mean curvatures assigned to locations sns_n there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime, having lightcone singularities over the sns_n but being smooth otherwise, and whose height function vanishes as s|s|\to\infty. No struts between the point singularities ever occur.Comment: This is the preprint of the version published in 2012 in Commun. Math. Phys. PLUS an errata which has been accepted 08/13/2018 for publication in Commun. Math. Phy

    Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma

    Full text link
    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.Comment: 44 pages, 12 figures. Accepted for publication in Phys. Rev.

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Use of external beam in PIXE

    No full text

    On Fuzzy Contra α-Irresolute Maps

    No full text

    Parametric estimation of water retention using mGMDH method and principal component analysis

    No full text
    Performing a primary analysis, such as principal component analysis (PCA) may increase accuracy and reliability of developed pedotransfer functions (PTFs). This study focuses on the usefulness of the soil penetration resistance (PR) and principal components (PCs) as new inputs along with the others to develop the PTFs for estimating the soil water retention curve (SWRC) using a multi-objective group method of data handling (mGMDH). The Brooks and Corey (1964) SWRC model was used to give a description of the water retention curves and its parameters were determined from experimental SWRC data. To select eight PCs, PCA was applied to all measured or calculated variables. Penetration resistance, organic matter (OM), aggregates mean weight diameter (MWD), saturated hydraulic conductivity (Ks), macro porosity (Mp), micro porosity (Mip) and eight selected PCs were used as predictors to estimate the Brooks and Corey model parameters by mGMDH. Using PR or OM, Ks and MWD, improved the estimation of SWRC in some cases. Using the predicted PR can be useful in the estimation of SWRC. Using either the MP and Mip or the eight PCs significantly improved the PTFs accuracy and reliability. It would be very useful to apply PCA on the original variables as a primary analysis to develop parametric PTFs
    corecore