12 research outputs found

    Quantum simulation of lattice gauge theories using Wilson fermions

    Full text link
    Quantum simulators have the exciting prospect of giving access to real-time dynamics of lattice gauge theories, in particular in regimes that are difficult to compute on classical computers. Future progress towards scalable quantum simulation of lattice gauge theories, however, hinges crucially on the efficient use of experimental resources. As we argue in this work, due to the fundamental non-uniqueness of discretizing the relativistic Dirac Hamiltonian, the lattice representation of gauge theories allows for an optimization that up to now has been left unexplored. We exemplify our discussion with lattice quantum electrodynamics in two-dimensional space-time, where we show that the formulation through Wilson fermions provides several advantages over the previously considered staggered fermions. Notably, it enables a strongly simplified optical lattice setup and it reduces the number of degrees of freedom required to simulate dynamical gauge fields. Exploiting the optimal representation, we propose an experiment based on a mixture of ultracold atoms trapped in a tilted optical lattice. Using numerical benchmark simulations, we demonstrate that a state-of-the-art quantum simulator may access the Schwinger mechanism and map out its non-perturbative onset.Comment: 19 pages, 11 figure

    Inflationary preheating dynamics with two-species condensates

    No full text

    Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53

    Get PDF
    The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newly revealed pocket selects stictic acid as a potential p53 reactivation compound. In human osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutant R175H more strongly than does PRIMA-1. These results indicate the L1/S3 pocket as a target for pharmaceutical reactivation of p53 mutants
    corecore