4 research outputs found

    Low-Temperature Carbon Capture Using Aqueous Ammonia and Organic Solvents

    No full text
    Current postcombustion CO<sub>2</sub> capture technologies are energy intensive, require high-temperature heat sources, and dramatically increase the cost of power generation. In this work, we introduce a new carbon capture process requiring significantly lower temperatures and less energy, creating further impetus to reduce CO<sub>2</sub> emissions from power generation. In this process, high-purity CO<sub>2</sub> is generated through the addition of an organic solvent (acetone, dimethoxymethane, or acetaldehyde) to a CO<sub>2</sub> rich, aqueous ammonia/carbon dioxide solution under room-temperature and -pressure conditions. The organic solvent and CO<sub>2</sub>-absorbing solution are then regenerated using low-temperature heat. When acetone, dimethoxymethane, or acetaldehyde was added at a concentration of 16.7% (v/v) to 2 M aqueous ammonium bicarbonate, 39.8, 48.6, or 86.5%, respectively, of the aqueous CO<sub>2</sub> species transformed into high-purity CO<sub>2</sub> gas over 3 h. Thermal energy and temperature requirements for recovering acetaldehyde, the best-performing organic solvent investigated, and the CO<sub>2</sub>-absorbing solution were 1.39 MJ/kg of CO<sub>2</sub> generated and 68 °C, respectively, 75% less energy than the amount used in a pilot chilled ammonia process and a temperature 53 °C lower. Our findings exhibit the promise of economically viable carbon capture powered entirely by abundant low-temperature waste heat

    Hydrophobic CuO Nanosheets Functionalized with Organic Adsorbates

    No full text
    A new class of hydrophobic CuO nanosheets is introduced by functionalization of the cupric oxide surface with <i>p</i>-xylene, toluene, hexane, methylcyclohexane, and chlorobenzene. The resulting nanosheets exhibit a wide range of contact angles from 146° (<i>p</i>-xylene) to 27° (chlorobenzene) due to significant changes in surface composition induced by functionalization, as revealed by XPS and ATR-FTIR spectroscopies and computational modeling. Aromatic adsorbates are stable even up to 250–350 °C since they covalently bind to the surface as alkoxides, upon reaction with the surface as shown by DFT calculations and FTIR and <sup>1</sup>H NMR spectroscopy. The resulting hydrophobicity correlates with H<sub>2</sub> temperature-programmed reduction (H<sub>2</sub>-TPR) stability, which therefore provides a practical gauge of hydrophobicity

    Loss of Phospholipid Membrane Integrity Induced by Two-Dimensional Nanomaterials

    No full text
    The interaction of two-dimensional (2D) nanomaterials with biological membranes has important implications for ecotoxicity and human health. In this study, we use a dye-leakage assay to quantitatively assess the disruption of a model phospholipid bilayer membrane (i.e., lipid vesicles) by five emerging 2D nanomaterials: graphene oxide (GO), reduced graphene oxide (rGO), molybdenum disulfide (MoS<sub>2</sub>), copper oxide (CuO), and iron oxide (α-Fe<sub>2</sub>O<sub>3</sub>). Leakage of dye from the vesicle inner solution, which indicates loss of membrane integrity, was observed for GO, rGO, and MoS<sub>2</sub> nanosheets but not for CuO and α-Fe<sub>2</sub>O<sub>3</sub>, implying that 2D morphology by itself is not sufficient to cause loss of membrane integrity. Mixing GO and rGO with lipid vesicles induced aggregation, whereas enhanced stability (dispersion) was observed with MoS<sub>2</sub> nanosheets, suggesting different aggregation mechanisms for the 2D nanomaterials upon interaction with lipid bilayers. No loss of membrane integrity was observed under strong oxidative conditions, indicating that nanosheet-driven membrane disruption stemmed from a physical mechanism rather than chemical oxidation. For GO, the most disruptive nanomaterial, we show that the extent of membrane integrity loss was dependent on total surface area, not edge length, which is consistent with a lipid-extraction mechanism and inconsistent with a piercing mechanism

    Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide

    No full text
    Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure–property-function (SPF) and structure–property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs
    corecore