7,383 research outputs found

    Short term synaptic depression improves information transfer in perceptual multistability

    Get PDF
    Competitive neural networks are often used to model the dynamics of perceptual bistability. Switching between percepts can occur through fluctuations and/or a slow adaptive process. Here, we analyze switching statistics in competitive networks with short term synaptic depression and noise. We start by analyzing a ring model that yields spatially structured solutions and complement this with a study of a space-free network whose populations are coupled with mutual inhibition. Dominance times arising from depression driven switching can be approximated using a separation of timescales in the ring and space-free model. For purely noise-driven switching, we use energy arguments to justify how dominance times are exponentially related to input strength. We also show that a combination of depression and noise generates realistic distributions of dominance times. Unimodal functions of dominance times are more easily differentiated from one another using Bayesian sampling, suggesting synaptic depression induced switching transfers more information about stimuli than noise-driven switching. Finally, we analyze a competitive network model of perceptual tristability, showing depression generates a memory of previous percepts based on the ordering of percepts.Comment: 26 pages, 15 figure

    Synaptic mechanisms of interference in working memory

    Get PDF
    Information from preceding trials of cognitive tasks can bias performance in the current trial, a phenomenon referred to as interference. Subjects performing visual working memory tasks exhibit interference in their trial-to-trial response correlations: the recalled target location in the current trial is biased in the direction of the target presented on the previous trial. We present modeling work that (a) develops a probabilistic inference model of this history-dependent bias, and (b) links our probabilistic model to computations of a recurrent network wherein short-term facilitation accounts for the dynamics of the observed bias. Network connectivity is reshaped dynamically during each trial, providing a mechanism for generating predictions from prior trial observations. Applying timescale separation methods, we can obtain a low-dimensional description of the trial-to-trial bias based on the history of target locations. The model has response statistics whose mean is centered at the true target location across many trials, typical of such visual working memory tasks. Furthermore, we demonstrate task protocols for which the plastic model performs better than a model with static connectivity: repetitively presented targets are better retained in working memory than targets drawn from uncorrelated sequences.Comment: 28 pages, 7 figure
    • …
    corecore