8 research outputs found

    Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows.

    No full text
    The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium\u27s amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery

    Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows.

    No full text
    The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium\u27s amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery

    Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia

    No full text
    CXCR4(WHIM) somatic mutations are distinctive to Waldenström Macroglobulinaemia (WM), and impact disease presentation and treatment outcome. The clonal architecture of CXCR4(WHIM) mutations remains to be delineated. We developed highly sensitive allele-specific polymerase chain reaction (AS-PCR) assays for detecting the most common CXCR4(WHIM) mutations (CXCR4(S338X C>A and C>G) ) in WM. The AS-PCR assays detected CXCR4(S338X) mutations in WM and IgM monoclonal gammopathy of unknown significance (MGUS) patients not revealed by Sanger sequencing. By combined AS-PCR and Sanger sequencing, CXCR4(WHIM) mutations were identified in 44/102 (43%), 21/62 (34%), 2/12 (17%) and 1/20 (5%) untreated WM, previously treated WM, IgM MGUS and marginal zone lymphoma patients, respectively, but no chronic lymphocytic leukaemia, multiple myeloma, non-IgM MGUS patients or healthy donors. Cancer cell fraction analysis in WM and IgM MGUS patients showed CXCR4(S338X) mutations were primarily subclonal, with highly variable clonal distribution (median 35·1%, range 1·2-97·5%). Combined AS-PCR and Sanger sequencing revealed multiple CXCR4(WHIM) mutations in many individual WM patients, including homozygous and compound heterozygous mutations validated by deep RNA sequencing. The findings show that CXCR4(WHIM) mutations are more common in WM than previously revealed, and are primarily subclonal, supporting their acquisition after MYD88(L265P) in WM oncogenesis. The presence of multiple CXCR4(WHIM) mutations within individual WM patients may be indicative of targeted CXCR4 genomic instability

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection
    corecore