40 research outputs found

    Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep

    Get PDF
    Uterine artery (UtA) adenovirus vector (Ad)-mediated over-expression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165(5 x 10(10)particles/ml, 10 ml, n =17) or Saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood-sampled weekly and a glucose tolerance test performed (68d postnatal age). Hepatic DNA/RNA was extracted at necropsy (83d postnatal age) to examine methylation status of eight somatotropic axis genes. ITALIC! IGF1mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165treatment. Fetal abdominal circumference and renal volume were greater in Ad.VEGF-A165versus Saline groups at 21/28 days (p ≤ 0.04) post-injection. At delivery, gestation length (p = 0.07), lamb birthweight (p = 0.08), umbilical girth (p = 0.06) and plasma glucose (p=0.09) tended to be greater in Ad.VEGF-A165treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (p = 0.02), insulin area-under-the-curve (p = 0.04) and carcass weight at necropsy (p = 0.04) were increased by Ad.VEGF-A165treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165gene therapy increased fetal growth in a sheep FGR model and lambs continued to thrive during the neonatal and early postnatal period

    Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression

    Get PDF
    Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression

    VEGF promotes assembly of the p130Cas interactome to drive endothelial chemotactic signalling and angiogenesis

    Get PDF
    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signalling, endothelial polarisation, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement

    Perinatal and long term effects of maternal uterine artery adenoviral VEGF-A165 gene therapy in the growth restricted guinea pig fetus

    Get PDF
    Uterine artery application of adenoviral vascular endothelial growth factor gene therapy (Ad.VEGF-A165) increases uterine blood flow and fetal growth in experimental animals with fetal growth restriction (FGR). Whether Ad.VEGF-A165 reduces lifelong cardiovascular disease risk imposed by FGR remains unknown. Here, pregnant guinea pigs fed 70% normal food intake to induce FGR received Ad.VEGF-A165 (1x1010 viral particles, n=15) or vehicle (n=10), delivered to the external surface of the uterine arteries, in mid-pregnancy. Ad libitum fed controls received vehicle only (n=14). Litter size, gestation length, and perinatal mortality were similar in control, untreated FGR and FGR+Ad.VEGF-A165 animals. Compared to controls, birth weight was lower in male but higher in female pups following maternal nutrient restriction, whilst both male and female FGR+Ad.VEGF-A165 pups were heavier than untreated FGR pups (P<0.05 ANOVA). Postnatal weight gain was 10-20% greater in female FGR+Ad.VEGF-A165 than untreated FGR pups, depending on age, although neither group differed from controls. Maternal nutrient restriction reduced heart weight in adult female offspring, irrespective of Ad.VEGF-A165 treatment, but did not alter ventricular wall thickness. In males, postnatal weight gain and heart morphology were not affected by maternal treatment. Neither systolic, diastolic nor mean arterial pressure, adrenal weight, basal or challenged plasma cortisol were affected by maternal undernutrition or Ad.VEGF-A165 in either sex. Therefore, increased fetal growth conferred by maternal uterine artery Ad.VEGF-A165 is sustained postnatally in FGR female guinea pigs. In this study we did not find evidence for an effect of maternal nutrient restriction or Ad.VEGF-A165 therapy on adult offspring blood pressure

    Peptides Derived from Vascular Endothelial Growth Factor B Show Potent Binding to Neuropilin-1

    Get PDF
    Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B isoform is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP-1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP-1, and developed VEGF-B - C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP-1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B - derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP-1 demonstrated that VEGF-B peptides bind at the canonical C-terminal Arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP-1 than the corresponding VEGF-A_{165} region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B_{167} derived peptides were more effective than VEGF-A_{165} peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease

    N-terminal modification of VEGF-A C terminus-derived peptides delineates structural features involved in neuropilin-1 binding and functional activity

    Get PDF
    The interaction between VEGF-A and its neuropilin (NRP) receptors mediates a number of important biological effects. NRP1 and the related molecule NRP2 are widely expressed on multiple tumour types and throughout the tumour vasculature, and are emerging as critical molecules required for the progression of angiogenic diseases. Given the increasing evidence supporting a role for NRP1 in tumour development, there is growing interest in developing inhibitors of NRP1 interactions with VEGF and its other ligands. In order to probe the interaction we synthesised a number of exon 7- and 8-derived bicyclic peptides with N-terminal lipophilic groups and found a simple N-octanoyl derivative (EG00086) to be the most potent and functionally active. Detailed modelling studies indicated that new intramolecular hydrogen bonds were formed, stabilising the structure and possibly contributing to the potency. Removal of a salt bridge between D142 and R164 implicated in VEGF-A binding to neuropilin-1 had a minor effect on potency. Isothermal calorimetry was used to assess binding of EG00086 to NRP1 and NRP2, and the stability of the peptide in serum and in vivo was investigated. EG00086 is a potent blocker of VEGF-promoted cellular adhesion to extracellular matrices, and phosphorylation of p130Cas contributes to this effect

    Uteroplacental adenovirus VEGF gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies.

    Get PDF
    Introduction: Fetal growth restriction (FGR) occurs in ~8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterised by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad) mediated over-expression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from mid-gestation correlates with reduced lamb birthweight near term. Materials and Methods: Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high-intake (n=45) or control-intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomised mid-gestation to receive bilateral UtA injections of 5x1011 particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14) or control saline (n=13). Fetal growth/wellbeing were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularisation within the perivascular adventitia and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry and qRT-PCR, respectively. Results: Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3-4 weeks post-injection (p=0.016-0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) following Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter to abdominal circumference and brain to liver weight ratios). No effects were observed on UBF or neovascularisation, however Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal to placental weight ratio) and FLT1/KDR mRNA expression was increased in the maternal but not fetal placental compartments, suggesting downstream effects on placental function. Conclusion: Ad.VEGF gene therapy improves fetal growth in a sheep model of FGR, although the precise mechanism of action remains unclear

    Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation.

    Get PDF
    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis

    Endothelial C-Type Natriuretic Peptide is a Critical Regulator of Angiogenesis and Vascular Remodeling.

    Get PDF
    BACKGROUND: Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease (PAD) and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS: The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells (PMEC) and aortic rings isolated from wild type (WT), endothelium-specific CNP knockout (ecCNP-/-), and global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and in human umbilical vein endothelial cells (HUVEC). These studies were complemented by in vivo investigation of neovascularization and vascular remodeling following ischemia or vessel injury, and CNP/NPR-C expression & localization in tissue from patients with PAD. RESULTS: Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of PMEC, HUVEC and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in ecCNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The pro-angiogenic effect of CNP/NPR-C is dependent on activation of Gi, ERK1/2 and PI3Kγ/Akt at a molecular level. CONCLUSIONS: These data define a central (patho)physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating PAD and ischemic cardiovascular disorders

    A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling

    Get PDF
    DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells. Knockdown of DOK1 or expression of a DOK1 mutant (DOK1FF) containing Phe in place of Tyr at residues 362 and 398, resulted in inhibition of both the PDGF-BB-induced tyrosine phosphorylation of p130Cas (also known as BCAR1) and the activation of Rap1. DOK1 colocalises with tyrosine phosphorylated p130Cas at the cell membrane of PDGF-BB-treated cells. Expression of a non-tyrosine-phosphorylatable substrate domain mutant of p130Cas (p130Cas15F) inhibited PDGF-BB-mediated Rap1 activation. Knockdown of DOK1 and Rap1 inhibited PDGF-BB-induced chemotactic cell migration, and knockdown of DOK1 and Rap1 and expression of DOK1FF inhibited PDGF-mediated three-dimensional (3D) spheroid invasion. These data show a crucial role for DOK1 in the regulation of PDGF-BB-mediated tumour cell motility through a p130Cas-Rap1 signalling pathway
    corecore