24 research outputs found

    Force-displacement relationship in micro-metric pantographs: experiments and numerical simulations

    Get PDF
    International audienceIn this paper, we reveal that the mathematical discrete model of Hencky type, introduced in [1], is appropriate for describing the mechanical behavior of micro-metric pantographic elementary modules. This behavior does not differ remarkably from what has been observed for milli-metric modules, as we prove with suitably designed experiments. Therefore, we conclude that the concept of pantographic microstructure seems feasible for micro-metrically architected microstructured (meta)materials as well. These results are particularly indicative of the possibility of fabricating materials that can have an underlying pantographic microstructure at micrometric scale, so that its unique behavior can be exploited in a larger range of technological applications

    Design and Characterization of Microscale Auxetic and Anisotropic Structures Fabricated by Multiphoton Lithography

    No full text
    The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale
    corecore