539 research outputs found

    On the Molecular Origin of the Cooperative Coil-to-globule Transition of Poly(N-isopropylacrylamide) in Water

    Full text link
    By means of atomistic molecular dynamics simulations we investigate the behaviour of poly(N-isopropylacrylamide), PNIPAM, in water at temperatures below and above the lower critical solution temperature (LCST), including the undercooled regime. The transition between water soluble and insoluble states at the LCST is described as a cooperative process involving an intramolecular coil-to-globule transition preceding the aggregation of chains and the polymer precipitation. In this work we investigate the molecular origin of such cooperativity and the evolution of the hydration pattern in the undercooled polymer solution. The solution behaviour of an atactic 30-mer at high dilution is studied in the temperature interval from 243 to 323 K with a favourable comparison to available experimental data. In the PNIPAM water soluble states we detect a correlation between polymer segmental dynamics and diffusion motion of bound water, occurring with the same activation energy. Simulation results show that below the coil-to-globule transition temperature PNIPAM is surrounded by a network of hydrogen bonded water molecules and that the cooperativity arises from the structuring of water clusters in proximity to hydrophobic groups. Differently, the perturbation of the hydrogen bond pattern involving water and amide groups occurs above the transition temperature. Altogether these findings reveal that even above the LCST PNIPAM remains largely hydrated and that the coil-to-globule transition is related with a significant rearrangement of the solvent in proximity of the surface of the polymer. The comparison between the hydrogen bonding of water in the surrounding of PNIPAM isopropyl groups and in bulk displays a decreased structuring of solvent at the hydrophobic polymer-water interface across the transition temperature, as expected because of the topological extension along the chain of such interface

    Mode-coupling theory predictions for a limited valency attractive square-well model

    Full text link
    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbors. Studying a large region of temperatures TT and packing fractions ϕ\phi, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a {\it (repulsive) glass} line at high packing fraction, and a {\it gel} line at low ϕ\phi and TT. The former is essentially vertical (ϕ\phi-controlled), while the latter is rather horizontal (TT-controlled) in the (ϕ−T)(\phi-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line -- in satisfactory agreement with the simulation results -- and an attractive glass line which appears to be unrelated to the gel line.Comment: 12 pages, 6 figures. To appear in J. Phys. Condens. Matter, special issue: "Topics in Application of Scattering Methods for Investigation of Structure and Dynamics of Soft Condensed Matter", Fiesole, November 200

    A closer look at arrested spinodal decomposition in protein solutions

    Get PDF
    Concentrated aqueous solutions of the protein lysozyme undergo a liquid solid transition upon a temperature quench into the unstable spinodal region below a characteristic arrest temperature of Tf=15C. We use video microscopy and ultra-small angle light scattering in order to investigate the arrested structures as a function of initial concentration, quench temperature and rate of the temperature quench. We find that the solid-like samples show all the features of a bicontinuous network that is formed through an arrested spinodal decomposition process. We determine the correlation length Xi and demonstrate that Xi exhibits a temperature dependence that closely follows the critical scaling expected for density fluctuations during the early stages of spinodal decomposition. These findings are in agreement with an arrest scenario based on a state diagram where the arrest or gel line extends far into the unstable region below the spinodal line. Arrest then occurs when during the early stage of spinodal decomposition the volume fraction phi2 of the dense phase intersects the dynamical arrest threshold phi2Glass, upon which phase separation gets pinned into a space-spanning gel network with a characteristic length Xi

    Numerical study of the glass-glass transition in short-ranged attractive colloids

    Full text link
    We report extensive numerical simulations in the {\it glass} region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behavior of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition.Comment: 15 pages, 9 figures; Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted to J. Phys.: Condens. Matt.

    Interplay between Spinodal Decomposition and Glass Formation in Proteins Exhibiting Short-Range Attractions

    Full text link
    We investigate the competition between spinodal decomposition and dynamical arrest using aqueous solutions of the globular protein lysozyme as a model system for colloids with short-range attractions. We show that quenches below a temperature Ta lead to gel formation as a result of a local arrest of the proteindense phase during spinodal decomposition. The rheological properties of these gels allow us to use centrifugation experiments to determine the local densities of both phases and to precisely locate the gel boundary and the attractive glass line close to and within the unstable region of the phase diagram

    The Development of an Ethical Strategy for Managers of International Hotels in Third World Countries

    Get PDF
    This article discusses some of the dilemmas of conscience that greet the international hotel manager in the Third World. It offers realistic and ethical guidelines for decision-making and problem-solving. Some of these guidelines require only common sense and good will to implement; others require a great deal of creativity, sensitivity, effort, and care; and a few will demand the courage to stand up for what is right in the face of competitive pressure

    Aging in short-ranged attractive colloids: A numerical study

    Full text link
    We study the aging dynamics in a model for dense simple liquids, in which particles interact through a hard-core repulsion complemented by a short-ranged attractive potential, of the kind found in colloidal suspensions. In this system, at large packing fractions, kinetically arrested disordered states can be created both on cooling (attractive glass) and on heating (repulsive glass). The possibility of having two distinct glasses, at the same packing fraction, with two different dynamics offers the unique possibility of comparing -- within the same model -- the differences in aging dynamics. We find that, while the aging dynamics of the repulsive glass is similar to the one observed in atomic and molecular systems, the aging dynamics of the attractive glass shows novel unexpected features.Comment: 8 pages, 11 figures, submited to Journal of Chemical Physic

    Numerical modelling of non-ionic microgels: an overview

    Get PDF
    Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions

    Take the Con Out of Consulting in the Food Service Industry

    Get PDF
    Consultants can help a food service operator with almost any problem which needs solving. Howeve6 the manager must manage the consultant. The author offers a design for planning for hiring and evaluating the work of anyone given the job of analyzing existing systems and diagnosing problems

    Past, Present, and Future: The Food Service Industry and Its Changes

    Get PDF
    In the article - Past, Present, and Future: The Food Service Industry and Its Changes - by Brother Herman E. Zaccarelli, International Director, Restaurant, Hotel and Institutional Management Institute at Purdue University, Brother Zaccarelli initially states: “Educators play an important role in the evolution of the food service industry. The author discusses that evolution and suggests how educators can be change agents along with management in that evolutionary progression.” The author goes on to wax philosophically, as well as speak generically about the food service industry; to why it offers fascinating and rewarding careers. Additionally, he writes about the influence educators have on students in this regard. “Educators can speak about how the food service industry has benefited them both personally and professionally,” says Brother Zaccarelli. “We get excited about alerting students to the many opportunities and, in fact, serve as “salespersons” for the industry to whoever (school administrators, legislators, and peers in the educational institution) will listen.” Brother Zaccarelli also speaks to growth and changes in food service, and even more importantly about the people and faces behind everything that food service, and hospitality in general comprise. The author will have you know, that people are what drive an educator. “What makes the food service industry so great? At the heart of this question\u27s answer is people: the people whom it serves in institutional and commercial operations of all types; the people who work within it; the people who provide the goods, services, and equipment to it; the people who study it,” says Brother Zaccarelli. “All of these groups have, of course, a vested personal and/or professional interest in seeing our industry improve.” Another concept the author would like you to absorb, and it’s even more so true today than yesterday, is the prevalence of convergence and divergence within food service. For food service and beyond, it is the common denominators and differences that make the hospitality-food service industry so dynamic and vibrant. These are the winds of change presented to an educator who wants to have a positive impact on students. The author warns that the many elements involved in the food service industry conspire to erode quality of service in an industry that is also persistently expanding, and whose cornerstone principles are underpinned by service itself. “The three concerns addressed - quality, employees, and marketing - are intimately related,” Brother Zaccarelli says in stripping-down the industry to bare essentials. He defines and addresses the issues related to each with an eye toward how education can reconcile said issues
    • 

    corecore