90 research outputs found

    A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Get PDF
    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1–5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate–lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm−3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation

    Tau Polarimetry with Multi Meson States

    Full text link
    It is demonstrated that the analyzing power of multi-meson final states in semileptonic τ\tau decays with respect to the τ\tau spin is equal and maximal for all decay modes.Comment: 4 pages, LaTex. The complete paper is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints

    Correction:Pyroelectric materials and devices for energy harvesting applications

    Get PDF

    Pyroelectric materials and devices for energy harvesting applications

    Get PDF
    This review covers energy harvesting technologies associated with pyroelectric materials and systems. Such materials have the potential to generate electrical power from thermal fluctuations and is a less well explored form of thermal energy harvesting than thermoelectric systems. The pyroelectric effect and potential thermal and electric field cycles for energy harvesting are explored. Materials of interest are discussed and pyroelectric architectures and systems that can be employed to improve device performance, such as frequency and power level, are described. In addition to the solid materials employed, the appropriate pyroelectric harvesting circuits to condition and store the electrical power are discussed

    A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Get PDF
    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1–5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate–lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm−3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation
    corecore