87 research outputs found

    ROLE OF CHAPERONES IN HEALTHY BOWEL AND IBD.

    Get PDF
    The chaperoning system is the wole complement of chaperones, co-chaperones and chaperone cofactors of the body that preserves cell and tissue homeostasis. Its structural and/or functional defects can cause pathologic conditions, nemed chaperonopathies. Large bowel homeostasis includes a healthy status of the mucosal tissues and the microbiota. An alteration of one of them may determine, in turn, modifications of the other. Molecular chaperones of bacteria and human origin have been implicated in inflammatory bowel disease (IBD). In IBD chaperone levels usually increase and their cellular and subcellular loclization change. This is considered a physiological stress-response of mucosal cells to inflammation. However, chaperones also play active roles in IBD pathogenesis, e.g. perpetuate inflammation. Therefore, IBD can be classified among the chaperonopathies. This classification opens the door to the design and application of new forms of treatment targeting the chaperones, namely chaperonopathy

    3D cultures of primary astrocytes on Poly-L-lactic acid scaffolds

    Get PDF
    Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro tissues with morphological and functional features similar to the biological tissue of the human body. Polymeric materials can be used in contact with biological systems in replacing destroyed tissue by transplantation [1]. Several biopolymers, including poly L (lactic acid) (PLLA), have been used in biomedical applications to set scaffolds with ductile proprieties and biodegradation kinetics [2]. In particular, the PLLA scaffold topography mimics the natural extracellular matrix and makes it a good candidate for neural tissue engineering. We report about of 3D system the PLLA porous scaffolds prepared via thermally-induced phase separation (TIPS) [3], and utilized as substrate for primary rat astrocytes 3D growth. Interestingly astrocytes adapt well to these porous matrices, not only remaining on the surface, but also penetrating inside the scaffolds. They colonize the matrix acquiring a typical star-like morphology; they form cell contacts and, in addition produce EVs as in vivo [4]. These results suggest that the chosen conditions could be a good starting point for 3D brain culture systems. PLLA scaffolds could be further enriched to host two or three different brain cell types, in order to set an in vitro model of blood brain barrier. The future use of co-culture systems may be involved in drug delivery studies, and in the formulation of new therapeutic strategies for the treatment of neurological diseases. [1]Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260: 920 [2]Nejati E, et al. Appl. Sci. Manuf. 2008; 39: 1589–1596 [3]Scaffaro R, et al. J. Mech. Behav. Biomed. Mater. 2016; 54:8-20 [4]Schiera G, et al. Biomed Res Int 2015: 152926, 201

    Human Wharton’s jelly-derived mesenchymal stem cells express several immunomodulatory molecules both in their naïve state and hepatocyte-like differentiated progeny: prospects for their use in liver diseases.

    Get PDF
    Wharton’s jelly (WJ), the main constituent of umbilical cord, is a reliable source of mesenchymal stem cells (MSC). WJ-MSC show unique ability in crossing lineage borders. As other extraembryonic mesenchymal populations (placenta and amnionderived cells), WJ-MSC express several immunomodulatory molecules, essential during the initial phases of human development. Indeed, our recent work pointed out the expression of non-classical HLA molecules as HLA-G in such cells, together with a favorable combination of B7 costimulators. Very few data in literature suggest that some of the immune features of the naïve cells are maintained after performing differentiation. The aim of this work was extending the knowledge on the expression of immunomodulatory molecules by naïve and differentiated WJ-MSC. To this purpose, WJMSC underwent differentiation to osteoblasts, adipocytes and hepatocyte-like cells. Differentiated cells were characterized, by both RT-PCR, ICC and histological stains for the acquisistion of the desired phenotypical features. RT-PCR and ICC were used to investigate the differential expression of immune-related molecules in control and differentiated cells. WJ-MSC resulted expressing diverse immunomodulatory molecules which spans from non-classical type I HLAs (i.e. HLA-E, -F, -G) , to further members of the B7 family, and of the CEA superfamily, for all of which in vivo immunomodulating functions are known. In addition, we demonstrated for the first time that the expression of these molecules is maintained after performing osteogenic, adipogenic or hepatogenic differentiation. Further experiments are undergoing to better evaluating the implications of these findings in the evolving field of liver regenerative medicine

    Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates

    Get PDF
    [Abstract] In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.This work was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Grant Agreements 785219 and 881603 of the Graphene Flagship. DS acknowledges the support of the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement no. 838902. MP as the recipient of the AXA Bionanotechnology Chair, is grateful to the AXA Research Fund for financial support. This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency-grant no. MDM-2017- 0720. AC thanks Xunta de Galicia for his research grant Atracción de Talento (no. ED431H 2020/17). GR acknowledges funding from RYC-2016-21412. HH acknowledges funding from Juan de la Cierva – Incorporación no. IJC-2018-037396-IXunta de Galicia; ED431H 2020/1

    Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer

    Get PDF
    Large bowel carcinogenesis involves accumulation of genetic alterations leading to transformation of normal mucosa into dysplasia and, lastly, adenocarcinoma. It is pertinent to elucidate the molecular changes occurring in the pre-neoplastic lesions to facilitate early diagnosis and treatment. Heat shock proteins (Hsps), many of which are molecular chaperones, are implicated in carcinogenesis, and their variations with tumor progression encourage their study as biomarkers. There are many reports on Hsps and cancer but none to our knowledge on their systematic quantification in pre-neoplastic lesions of the large bowel. We performed immunohistochemical determinations of Hsp10, Hsp60, Hsp70, and Hsp90 in biopsies of large bowel tubular adenomas with moderate grade of dysplasia and compared to normal mucosa and adenocarcinoma with a moderate grade of differentiation (G2). A significant elevation of Hsp10 and Hsp60 only, i.e., in the absence of elevation of Hsp70 or Hsp90, in both epithelium and lamina propria was found in tubular adenoma by comparison with normal mucosa. In contrast, adenocarcinoma was characterized by the highest levels of Hsp10 and Hsp60 in epithelium and lamina propria, accompanied by the highest levels of Hsp70 only in epithelium and of Hsp90 only in lamina propria, by comparison with normal and tubular adenoma counterparts. Hsp10 and Hsp60 are promising biomarkers for early diagnosis of tubular adenoma and for its differentiation from more advanced malignant lesions. Hsp10 and Hsp60 may be implicated in carcinogenesis from its very early steps and, thus, are potentially convenient targets for therapy

    Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study.

    Get PDF
    Identification of predictors of cardiovascular risk can help in the prevention of pathologic episodes and the management of patients at all stages of illness. Here, we investigated the relationships between serum levels of Hsp60 and dyslipidemia in patients with periodontitis by performing a cross-sectional study of 22 patients with mild periodontitis without any prior treatment for it (i.e., drug naïve) and 22 healthy controls, matched for age and body mass index (BMI). All subjects were evaluated for periodontal status, gingival inflammation, and oral hygiene. Levels of circulating Hsp60, C-reactive protein (CRP), and plasma lipids were measured, and small, dense low-density lipoproteins (LDL) were indirectly assessed by determining the triglycerides/high-density lipoproteins (HDL) cholesterol ratio. We also assessed by immunohistochemistry Hsp60 levels in oral mucosa of patients and controls. No difference was found in CRP levels or plasma lipids between the two groups, but subjects with periodontitis showed, in comparison to controls, higher levels of small, dense LDL (p  = 0.0355) and circulating Hsp60 concentrations (p < 0.0001). However, levels of mucosal Hsp60 did not change significantly between groups. Correlation analysis revealed that circulating Hsp60 inversely correlated with HDL-cholesterol (r  = -0.589, p  = 0.0039), and positively with triglycerides (r  = +0.877, p < 0.0001), and small, dense LDL (r  = +0.925, p < 0.0001). Serum Hsp60 significantly correlated with the degree of periodontal disease (r  = +0.403, p  = 0.0434). In brief, untreated patients with mild periodontitis had increased small, dense LDL and serum Hsp60 concentrations, in comparison to age- and BMI-matched controls and both parameters showed a strong positive correlation. Our data indicate that atherogenic dyslipidemia and elevated circulating Hsp60 tend to be linked and associated to periodontal pathology. Thus, the road is open to investigate the potential value of elevated levels of circulating Hsp60 as predictor of risk for cardiovascular disease when associated to dyslipidemia in periodontitis patients

    Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    Get PDF
    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient’s life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly

    “Golden” Tomato Consumption Ameliorates Metabolic Syndrome: A Focus on the Redox Balance in the High-Fat-Diet-Fed Rat

    Get PDF
    Tomato fruits defined as “golden” refer to a food product harvested at an incomplete ripening stage with respect to red tomatoes at full maturation. The aim of this study is to explore the putative influence of “golden tomato” (GT) on Metabolic Syndrome (MetS), especially focusing on the effects on redox homeostasis. Firstly, the differential chemical properties of the GT food matrix were characterized in terms of phytonutrient composition and antioxidant capacities with respect to red tomato (RT). Later, we assessed the biochemical, nutraceutical and eventually disease-modifying potential of GT in vivo in the high-fat-diet rat model of MetS. Our data revealed that GT oral supplementation is able to counterbalance MetS-induced biometric and metabolic modifications. Noteworthy is that this nutritional supplementation proved to reduce plasma oxidant status and improve the endogenous antioxidant barriers, assessed by strong systemic biomarkers. Furthermore, consistently with the reduction of hepatic reactive oxygen and nitrogen species (RONS) levels, treatment with GT markedly reduced the HFD-induced increase in hepatic lipid peroxidation and hepatic steatosis. This research elucidates the importance of food supplementation with GT in the prevention and management of MetS
    • …
    corecore