261 research outputs found

    Interface Modification for Energy Levels Alignment and Charge Extraction in CsPbI3_3 Perovskite Solar Cells

    Get PDF
    In perovskite solar cells (PSCs) energy levels alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3_3 perovskite and its hole selective contact (Spiro-OMeTAD), realized by a dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, by n-Octyl ammonium Iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3_3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by transient surface photovoltage technique (trSPV) accomplished by charge transport simulation.Comment: 20 pages, 4 Figure

    Search for hidden-charm tetraquark with strangeness in e+eK+DsD0+c.c.e^{+}e^{-}\rightarrow K^+ D_{s}^{*-} D^{*0}+c.c.

    Full text link
    We report a search for a heavier partner of the recently observed Zcs(3985)Z_{cs}(3985)^{-} state, denoted as ZcsZ_{cs}^{\prime -}, in the process e+eK+DsD0+c.c.e^{+} e^{-}\rightarrow K^{+}D_{s}^{*-}D^{* 0}+c.c., based on e+ee^+e^- collision data collected at the center-of-mass energies of s=4.661\sqrt{s}=4.661, 4.682 and 4.699 GeV with the BESIII detector. The ZcsZ_{cs}^{\prime -} is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+K^+ recoil-mass spectra, which are probed for a potential contribution from ZcsDsD0Z_{cs}^{\prime -}\to D_{s}^{*-}D^{* 0} (c.c.c.c.). We find an excess of ZcsDsD0Z_{cs}^{\prime -}\rightarrow D_{s}^{*-}D^{*0} (c.c.c.c.) candidates with a significance of 2.9σ2.9\sigma, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±1.1syst.)MeV/c2(4123.5 \pm 0.7_{\mathrm{stat.}} \pm 1.1_{\mathrm{syst.}}) \mathrm{MeV}/c^{2}. As the data set is limited in size, the upper limits are evaluated at the 90% confidence level on the product of the Born cross section and the branching fraction of ZcsDsD0Z_{cs}^{\prime-}\rightarrow D_{s}^{*-}D^{* 0}, σBornB\sigma^{\rm Born}\cdot\mathcal{B} at the three energy points, under different assumptions of the ZcsZ_{cs}^{\prime -} mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV. Under various mass and width assumptions, the upper limits of σBornB\sigma^{\rm Born}\cdot\mathcal{B} are found to lie in the range of 262\sim6, 373\sim7 and 363\sim6 pb at s=4.661\sqrt{s}=4.661, 4.682 and 4.699 GeV, respectively. The larger data samples that will be collected in the coming years will allow a clearer picture to emerge concerning the existence and nature of the ZcsZ_{cs}^{\prime -} state.Comment: 17 pages, 7 figure

    Production of doubly-charged Δ\Delta baryon in e+ee^{+}e^{-} annihilation at energies from 2.3094 to 2.6464 GeV

    Full text link
    The processes e+eΔ++Δˉe^{+}e^{-} \to \Delta^{++}\bar{\Delta}^{--} and e+eΔ++pˉπ+c.c.e^{+}e^{-}\to \Delta^{++} \bar{p} \pi^{-} + c.c. are studied for the first time with 179 pb1179~{\rm pb}^{-1} of e+ee^{+}e^{-} annihilation data collected with the BESIII detector at center-of-mass energies from 2.30942.3094 GeV to 2.64642.6464 GeV. No significant signal for the e+eΔ++Δˉe^{+}e^{-}\to \Delta^{++}\bar{\Delta}^{--} process is observed and the upper limit of the Born cross section is estimated at each energy point. For the process e+eΔ++pˉπ+c.c.e^{+}e^{-} \to \Delta^{++} \bar{p} \pi^{-} + c.c., a significant signal is observed at center-of-mass energies near 2.6454 GeV and the corresponding Born cross section is reported.Comment: 10 pages, 4 figure

    Observation of D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} in the amplitude analysis of D+KS0π+ηD^{+} \to K_{S}^{0}\pi^+\eta

    Full text link
    We perform for the first time an amplitude analysis of the decay D+KS0π+ηD^{+}\to K_{S}^{0}\pi^+\eta and report the observation of the decay D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} using 2.93 fb1^{-1} of e+ee^+e^- collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. As the only W-annihilation free decay among DD to a0(980)a_{0}(980)-pseudoscalar, D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} is the ideal decay to extract the contributions of the external and internal WW-emission amplitudes involving a0(980)a_{0}(980) and study the final-state interactions. The absolute branching fraction of D+KS0π+ηD^{+}\to K_{S}^{0}\pi^+\eta is measured to be (1.27±0.04stat.±0.03syst.)%(1.27\pm0.04_{\rm stat.}\pm0.03_{\rm syst.})\%. The product branching fractions of D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} with a0(980)+π+ηa_{0}(980)^{+}\to \pi^+\eta and D+π+K0(1430)0D^{+}\to \pi^+ K_0^*(1430)^0 with K0(1430)0KS0ηK_0^*(1430)^0\to K_{S}^{0}\eta are measured to be (1.33±0.05stat.±0.04syst.)%(1.33\pm0.05_{\rm stat.}\pm0.04_{\rm syst.})\% and (0.14±0.03stat.±0.01syst.)%(0.14\pm0.03_{\rm stat.}\pm0.01_{\rm syst.})\%, respectively

    Observation of the semileptonic decays D0KS0ππ0e+νeD^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e and D+KS0π+πe+νeD^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e

    Full text link
    By analyzing e+ee^+e^- annihilation data corresponding to an integrated luminosity of 2.93 fb1\rm fb^{-1} collected at a center-of-mass energy of 3.773 GeV with the \text{BESIII} detector, the first observation of the semileptonic decays D0KS0ππ0e+νeD^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e and D+KS0π+πe+νeD^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e is reported. With a dominant hadronic contribution from K1(1270)K_1(1270), the branching fractions are measured to be B(D0K1(1270)(KS0ππ0)e+νe)=(1.690.46+0.53±0.15)×104\mathcal{B}(D^0\rightarrow {K}_1(1270)^-(\to K^0_S\pi^-\pi^0)e^+\nu_e)=(1.69^{+0.53}_{-0.46}\pm0.15)\times10^{-4} and B(D+Kˉ1(1270)0(KS0π+π)e+νe)=(1.470.40+0.45±0.20)×104\mathcal{B}(D^+\to \bar{K}_1(1270)^0(\to K^0_S\pi^+\pi^-)e^+\nu_e)=(1.47^{+0.45}_{-0.40}\pm0.20)\times10^{-4} with statistical significance of 5.4σ\sigma and 5.6σ\sigma, respectively. When combined with measurements of the K1(1270)K+ππK_1(1270)\to K^+\pi^-\pi decays, the absolute branching fractions are determined to be B(D0K1(1270)e+νe)=(1.050.28+0.33±0.12±0.12)×103\mathcal{B}(D^0\to K_1(1270)^-e^+\nu_e)=(1.05^{+0.33}_{-0.28}\pm0.12\pm0.12)\times10^{-3} and B(D+Kˉ1(1270)0e+νe)=(1.290.35+0.40±0.18±0.15)×103\mathcal{B}(D^+\to \bar{K}_1(1270)^0e^+\nu_e)=(1.29^{+0.40}_{-0.35}\pm0.18\pm0.15)\times10^{-3}. The first and second uncertainties are statistical and systematic, respectively, and the third uncertainties originate from the assumed branching fractions of the K1(1270)KππK_1(1270)\to K\pi\pi decays.Comment: 19page

    Observation of the Singly Cabibbo-Suppressed Decay Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+}

    Full text link
    The singly Cabibbo-suppressed decay Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} is observed for the first time with a statistical significance of 6.4σ6.4\sigma by using 4.5 fb1^{-1} of e+ee^+e^- collision data collected at center-of-mass energies between 4.600 and 4.699 GeV with the BESIII detector at BEPCII. The absolute branching fraction of Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} is measured to be (3.8±1.3stat±0.2syst)×104(3.8\pm1.3_{\rm stat}\pm0.2_{\rm syst})\times 10^{-4} in a model-independent approach. This is the first observation of a Cabibbo-suppressed Λc+\Lambda_{c}^{+} decay involving Σ\Sigma^- in the final state. The ratio of branching fractions between Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} and the Cabibbo-favored decay Λc+Σπ+π+\Lambda_{c}^{+}\to \Sigma^- \pi^+\pi^+ is calculated to be (0.4±0.1)sc2(0.4 \pm 0.1)s_{c}^{2}, where scsinθc=0.2248s_{c} \equiv \sin\theta_c = 0.2248 with θc\theta_c the Cabibbo mixing angle. This ratio significantly deviates from 1.0sc21.0s_{c}^{2} and provides important information for the understanding of nonfactorization contributions in Λc+\Lambda_{c}^{+} decays.Comment: 8 pages, 2 figure

    Improved measurement of the decays ηπ+ππ+(0)π(0)\eta' \to \pi^{+}\pi^{-}\pi^{+(0)}\pi^{-(0)} and search for the rare decay η4π0\eta' \to 4\pi^{0}

    Full text link
    Using a sample of 10 billion J/ψJ/{\psi} events collected with the BESIII detector, the decays ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}, ηπ+ππ0π0\eta' \to \pi^{+}\pi^{-}\pi^{0}\pi^{0} and η4π0\eta' \to 4 \pi^{0} are studied via the process J/ψγηJ/{\psi}\to\gamma\eta'. The branching fractions of ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} and ηπ+ππ0\eta' \to \pi^{+}\pi^{-}\pi^{0} π0\pi^{0} are measured to be (8.56±0.25(stat.)±0.23(syst.))×105( 8.56 \pm 0.25({\rm stat.}) \pm 0.23({\rm syst.}) ) \times {10^{ - 5}} and (2.12±0.12(stat.)±0.10(syst.))×104(2.12 \pm 0.12({\rm stat.}) \pm 0.10({\rm syst.})) \times {10^{ - 4}}, respectively, which are consistent with previous measurements but with improved precision. No significant η4π0\eta' \to 4 \pi^{0} signal is observed, and the upper limit on the branching fraction of this decay is determined to be less than 1.24×1051.24 \times {10^{-5}} at the 90%90\% confidence level. In addition, an amplitude analysis of ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} is performed to extract the doubly virtual isovector form factor α\alpha for the first time. The measured value of α=1.22±0.33(stat.)±0.04(syst.)\alpha=1.22 \pm 0.33({\rm stat.}) \pm 0.04({\rm syst.}), is in agreement with the prediction of the VMD model

    Search for a scalar partner of the X(3872)X(3872) via ψ(3770)\psi(3770) decays into γηη\gamma\eta\eta' and γπ+πJ/ψ\gamma\pi^{+}\pi^{-}J/\psi

    Full text link
    Using a data sample corresponding to an integrated luminosity of 2.93 fb1^{-1} collected at a center-of-mass energy of 3.773~GeV with the BESIII detector at the BEPCII collider, we search for a scalar partner of the X(3872)X(3872), denoted as X(3700)X(3700), via ψ(3770)γηη\psi(3770)\to \gamma\eta\eta' and γπ+πJ/ψ\gamma\pi^{+}\pi^{-}J/\psi processes. No significant signals are observed and the upper limits of the product branching fractions B(ψ(3770)γX(3700))B(X(3700)ηη) {\cal B}(\psi(3770)\to\gamma X(3700))\cdot {\cal B}(X(3700)\to \eta\eta') and B(ψ(3770)γX(3700))B(X(3700)π+πJ/ψ){\cal B}(\psi(3770)\to\gamma X(3700))\cdot {\cal B}(X(3700)\to\pi^{+}\pi^{-}J/\psi) are determined at the 90\% confidence level, for the narrow X(3700)X(3700) with a mass ranging from 3710 to 3740 MeV/c2c^2, which are from 0.8 to 1.8 (×105)(\times 10^{-5}) and 0.9 to 3.4 (×105)(\times 10^{-5}), respectively

    Measurement of branching fractions of Λc+\Lambda_{c}^{+} decays to Σ+K+K\Sigma^{+} K^{+} K^{-}, Σ+ϕ\Sigma^{+}\phi and Σ+K+π(π0)\Sigma^{+} K^{+} \pi^{-}(\pi^{0})

    Full text link
    Based on 4.5 fb1^{-1} data taken at seven center-of-mass energies ranging from 4.600 to 4.699 GeV with the BESIII detector at the BEPCII collider, we measure the branching fractions of Λc+Σ++hadrons\Lambda_{c}^{+}\rightarrow\Sigma^{+}+hadrons relative to Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-. Combining with the world average branching fraction of Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-, their branching fractions are measured to be (0.377±0.042±0.018±0.021)%(0.377\pm0.042\pm0.018\pm0.021)\% for Λc+Σ+K+K\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} K^{-}, (0.200±0.023±0.010±0.011)%(0.200\pm0.023\pm0.010\pm0.011)\% for Λc+Σ+K+π\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} \pi^{-}, (0.414±0.080±0.029±0.023)%(0.414\pm0.080\pm0.029\pm0.023)\% for Λc+Σ+ϕ\Lambda_{c}^{+}\rightarrow\Sigma^{+}\phi and (0.197±0.036±0.008±0.011)%(0.197\pm0.036\pm0.008\pm0.011)\% for Λc+Σ+K+K\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{+} K^{-}(non-ϕ\phi). In all the above results, the first uncertainties are statistical, the second are systematic and the third are from external input of the branching fraction of Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-. Since no signal for Λc+Σ+K+ππ0\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} \pi^{-}\pi^{0} is observed, the upper limit of its branching fraction is determined to be 0.11\% at the 90%\% confidence level

    Improved measurements of the Dalitz decays η/ηγe+e\eta/\eta'\rightarrow\gamma e^{+}e^{-}

    Full text link
    Based on a data sample of 10 billion J/ψJ/\psi events collected with the BESIII detector, improved measurements of the Dalitz decays η/ηγe+e\eta/\eta'\rightarrow\gamma e^+e^- are performed, where the η\eta and η\eta' are produced through the radiative decays J/ψγη/ηJ/\psi\rightarrow\gamma \eta/\eta'. The branching fractions of ηγe+e\eta\rightarrow\gamma e^+e^- and ηγe+e\eta'\rightarrow\gamma e^+e^- are measured to be (7.07±0.05±0.23)×103(7.07 \pm 0.05 \pm 0.23)\times10^{-3} and (4.83±0.07±0.14)×104(4.83\pm0.07\pm0.14)\times10^{-4}, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for ηγe+e\eta\rightarrow\gamma e^+e^- is determined to be Λη=(0.749±0.027±0.007) GeV/c2\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}. Within the multi-pole model, we extract the electromagnetic transition form factors for ηγe+e\eta'\rightarrow\gamma e^+e^- to be Λη=(0.802±0.007±0.008) GeV/c2\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2} and γη=(0.113±0.010±0.002) GeV/c2\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the η\eta and η\eta' are calculated to be (0.645±0.023±0.007) fm(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm} and (0.596±0.005±0.006) fm(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}, respectively. In addition, we search for the dark photon in η/ηγe+e\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}, and the upper limits of the branching fractions as a function of the dark photon are given at 90\% confidence level
    corecore