10 research outputs found
Predictive value of neuromarkers supported by a set of clinical criteria in patients with mild traumatic brain injury: S100B protein and neuron-specific enolase on trial
Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research
Exosomes are small extracellular vesicles (30–150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers. </p
Biomarkers Improve Clinical Outcome Predictors of Mortality Following Non-Penetrating Severe Traumatic Brain Injury
This study assessed whether early levels of biomarkers measured in CSF within 24-h of severe TBI would improve the clinical prediction of 6-months mortality.
This prospective study conducted at two Level 1 Trauma Centers enrolled adults with severe TBI (GCS a parts per thousand currency sign8) requiring a ventriculostomy as well as control subjects. Ventricular CSF was sampled within 24-h of injury and analyzed for seven candidate biomarkers (UCH-L1, MAP-2, SBDP150, SBDP145, SBDP120, MBP, and S100B). The International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) scores (Core, Extended, and Lab) were calculated for each patient to determine risk of 6-months mortality. The IMPACT models and biomarkers were assessed alone and in combination.
There were 152 patients enrolled, 131 TBI patients and 21 control patients. Thirty six (27 %) patients did not survive to 6 months. Biomarkers were all significantly elevated in TBI versus controls (p < 0.001). Peak levels of UCH-L1, SBDP145, MAP-2, and MBP were significantly higher in non-survivors (p < 0.05). Of the seven biomarkers measured at 12-h post-injury MAP-2 (p = 0.004), UCH-L1 (p = 0.024), and MBP (p = 0.037) had significant unadjusted hazard ratios. Of the seven biomarkers measured at the earliest time within 24-h, MAP-2 (p = 0.002), UCH-L1 (p = 0.016), MBP (p = 0.021), and SBDP145 (0.029) had the most significant elevations. When the IMPACT Extended Model was combined with the biomarkers, MAP-2 contributed most significantly to the survival models with sensitivities of 97-100 %.
These data suggest that early levels of MAP-2 in combination with clinical data provide enhanced prognostic capabilities for mortality at 6 months
Green metal-free synthesis of spiro-fused 3,4′-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine derivatives via deamination cyclization reactions in aqueous medium
Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers
Over the past decade, public awareness of the long-term pathological consequences of traumatic brain injury (TBI) has increased. Such awareness has been stimulated mainly by reports of progressive neurological dysfunction in athletes exposed to repetitive concussions in high-impact sports such as boxing and American football, and by the rising number of TBIs in war veterans who are now more likely to survive explosive blasts owing to improved treatment. Moreover, the entity of chronic traumatic encephalopathy (CTE)—which is marked by prominent neuropsychiatric features including dementia, parkinsonism, depression, agitation, psychosis, and aggression—has become increasingly recognized as a potential late outcome of repetitive TBI. Annually, about 1% of the population in developed countries experiences a clinically relevant TBI. The goal of this Review is to provide an overview of the latest understanding of CTE pathophysiology, and to delineate the key issues that are challenging clinical and research communities, such as accurate quantification of the risk of CTE, and development of reliable biomarkers for single-incident TBI and CTE
Synthesis and characterization of novel binuclear task-specific ionic liquid: an efficient and sustainable sulfonic-functionalized ionic liquid for one-pot synthesis of xanthenes
Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics
Purpose This review summarizes protein biomarkers in
mild and severe traumatic brain injury in adults and
children and presents a strategy for conducting rationally
designed clinical studies on biomarkers in head trauma.
Methods We performed an electronic search of the National
Library of Medicine’s MEDLINE and Biomedical Library
of University of Pennsylvania database in March 2008
using a search heading of traumatic head injury and protein
biomarkers. The search was focused especially on protein
degradation products (spectrin breakdown product, c-tau,
amyloid-β1–42) in the last 10 years, but recent data on
“classical” markers (S-100B, neuron-specific enolase, etc.)
were also examined.
Results We identified 85 articles focusing on clinical use of
biomarkers; 58 articles were prospective cohort studies with
injury and/or outcome assessment.
Conclusions We conclude that only S-100B in severe
traumatic brain injury has consistently demonstrated the
ability to predict injury and outcome in adults. The number
of studies with protein degradation products is insufficient
especially in the pediatric care. Cohort studies with welldefined
end points and further neuroproteomic search for
biomarkers in mild injury should be triggered. After
critically reviewing the study designs, we found that large
homogenous patient populations, consistent injury, and
outcome measures prospectively determined cutoff values,
and a combined use of different predictors should be
considered in future studies
