5 research outputs found

    Deducing the source and composition of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C − 3.5 to − 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C −5.2 to −6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.This project was funded by the UK Natural Environment Research Council (NERC) SoS RARE project (NE/M011429/1) and by NIGL (NERC Isotope Geoscience Laboratory) Project number 20135

    Behaviour of radionuclides in the presence of superplasticiser

    Get PDF
    Superplasticisers improve the flow properties of fresh cement and offer undoubted benefits to the construction sector. There is concern in the nuclear industry, however, that the presence of a superplasticiser in grout or backfill cement may increase the solubility of radionuclides in the cementitious pore water and/or reduce their adsorption from solution. This paper describes the effect of a commercial, polycarboxylated, polyether comb type superplasticiser on the behaviour of selected metals in blended cements through a series of batch and monolith leach experiments. Results of batch experiments show that the presence of free superplasticiser in solution reduces uptake of nickel (63Ni) and europium (152Eu) by both blast-furnace-slag- and pulverised-fly-ash-modified ordinary Portland cement. Further, metal bound in the presence of free superplasticiser is readily remobilised on exposure to fresh cement solution. Conversely, metal uptake is almost complete and appears irreversible when exposed to hardened cements prepared with superplasticiser as part of the original mix. Monolithic slag cement samples prepared with superplasticiser suffer from bleed, with the surplus water containing a significant proportion of the metals added, including uranium and thorium. Digital autoradiography reveals heterogeneous distribution of radioactivity in the monoliths and demonstrates that the dissolved metals have not been effectively immobilised throughout the specimen. The mobility of thorium may indicate similar behaviour by other tetravalent actinide species, notably Pu(IV) and Np(IV)
    corecore