4,195 research outputs found

    Illness Experiences among Chinese College Students: A Negotiation Process between Social Connections and Protection of Self-Image

    Get PDF
    This study explored the experience of illness in relation to self-image, biographical disruption, and the process of coping through semi-structured interviews with students of a university in China. Twelve students were recruited under three categories, having a physical chronic illness, mental health illness, and chronic multiple morbidities. Indepth interviews were conducted and content analyses were applied to their recordings to identify major themes and subordinate themes in the illness experience. Results showed a distorted sense of self and biographical disruptions in young adulthood were common, as reported by the respondents. Students tried to cope with these disruptions with both individual strengths and social support, but not always with positive results. Reconstruction of self, in the analysis of illness experiences, was found a crucial strategy in overcoming disruptions. Social support of evaluative nature facilitated the adoption of the reconstruction strategy. A network-building approach is recommended for student services in higher education whereas further research is necessary to understand the processes of self-reconstruction

    Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization

    Full text link
    © 2015 Elsevier Ltd. All rights reserved. Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request

    Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure

    Get PDF
    Increased intraocular pressure (IOP) damages the retinal ganglion cell axons as they pass through the optic nerve head (ONH). The massive connective tissue structure of the human lamina cribrosa is generally assumed to be the pressure transducer responsible for the damage. The rat, however, with no lamina cribrosa, suffers the same glaucomatous response to raised IOP. Here, we show that the astrocytes of the rat ONH are "fortified" by extraordinarily dense cytoskeletal filaments that would make them ideal transducers of distorting mechanical forces. The ONH astrocytes are arranged as a fan-like radial array, firmly attached ventrally to the sheath of the ONH by thick basal processes, but dividing dorsally into progressively more slender processes with only delicate attachments to the sheath. At 1 week after raising the IOP by an injection of magnetic microspheres into the anterior eye chamber, the fine dorsal processes of the ONH astrocytes are torn away from the surrounding sheath. There is no indication of distortion or compression of the axons. Subsequently, despite return of the IOP toward normal levels, the damage to the ONH progresses ventrally through the astrocytic cell bodies, resulting in complete loss of the fortified astrocytes and of the majority of the axons by around 4 weeks. We propose that the dorsal attachments of the astrocytes are the site of initial damage in glaucoma, and that the damage to the axons is not mechanical, but is a consequence oflocalized loss of metabolic support from the astrocytes (Tsacopoulos and Magistretti (1996) J Neurosci 16:877-885)

    Irradiation-induced molecular dipole reorientation in inverted polymer solar cell using small molecular electron collection layer

    Full text link
    Inverted polymer solar cell is developed using small molecular tris(8-hydroxyquinolinato) aluminum (Alq3) as an electron collection layer between the active layer and indium-tin-oxide bottom cathode. Upon post-processing light irradiation by simulated solar illumination, the open-circuit voltage of the inverted device increases from 0.52 V to 0.60 V, resulting in the enhancement of the power conversion efficiency from 2.54 to 3.33 with negligible change in the short-circuit current. The performance improvement is attributed to the removal of surface potential due to irradiation-induced molecular dipole reorientation in the Alq3 layer, which reduces the charge transport barrier and improves the charge collection efficiency. © 2011 American Institute of Physics

    A magnetically shielded instrument for magnetoresistance and noise characterizations of magnetic tunnel junction sensors

    Get PDF
    A magnetically shielded setup was developed for characterizing magnetoresistance (MR) and noise properties of magnetic tunneling junction (MTJ) sensors. A mu-metal shielding is installed to avoid the interference of external magnetic disturbance. Both MR curves and noise power spectra of MTJ sensors can be obtained for further data analysis. Moreover, a hard-axis magnetic field can be applied to eliminate the hysteresis and the linear field response of MTJ sensors can be measured. The preliminary measurement results on MTJ sensors are presented to illustrate the characterization capabilities of this setup. © 2010 IEEE.published_or_final_versionThe 2010 IEEE International Conference of Electronic Devices and Solid-State Circuits (EDSSC), Hong Kong, 15-17 December 2010. In Proceedings of EDSSC, 2010, p. 1-

    Magnetic tunnel junction sensors with conetic alloy

    Get PDF
    Poster Session - F. Storage Applications and Others: PF-12This journal issue contain selected papers of APDSC'10Al 2O 3 magnetic tunneling junction (MTJ) sensors were fabricated with Conetic alloy Ni 77Fe 14Cu 5Mo 4 deposited as the free layer and pinned layer for its soft magnetic properties. It was observed that the Al 2O 3 MTJ sensors with Conetic exhibited relatively small easy-axis coercivity. Tunneling magnetoresistance (TMR) and noise measurements were carried out to characterize the sensors. TMR of 9.5% and Hooge parameter of 3.825 × 10 -7μm 2 were achieved without any hard-axis field. Hard-axis bias field was applied to eliminate the hysteresis and improve the linear field response of the MTJ sensor. The hysteresis was removed by applying an external magnetic field along the hard axis at 8 Oe and the sensor sensitivity was 0.4 %/Oe within a linear region at room temperature. The relationship between the Hooge parameter and hard-axis field was also investigated and the result demonstrated that the 1/f noise can be suppressed by an optimized hard-axis bias field. This work shows that it is feasible to use Conetic alloy as the soft magnetic layers in MTJ sensors for its small coercivity, and a hard-axis bias field can be used to linearize the sensor response and suppress the 1/f noise. © 2011 IEEE.published_or_final_versionThe Asia-Pacific Data Storage Conference (APDSC'10), Hualien, Taiwan, 27-29 October 2010. In IEEE Transactions on Magnetics, 2011, v. 47 n. 3, p. 714-71

    New proposed conceptual mathematical models for biomass viability and membrane fouling of membrane bioreactor

    Full text link
    The production and accumulation of soluble microbial products (SMP), extracellular polymeric substances (EPS) and colloidal inert compounds within a membrane bioreactor (MBR) may greatly affect the biomass viability and subsequently the permeability of the membrane. This paper aims at presenting new mathematical models of biomass viability and membrane fouling that has been conceptually developed through establishing links between these biomass parameters and operating parameters of the MBR. The proposed models can be used to predict the biomass viability and membrane fouling at any state of operation of MBR. Meanwhile, easily measurable parameters of the proposed model can also serve to estimate SMP/EPS concentration in the supernatant of MBR without the tedious and expensive measurement. © 2013 Elsevier Ltd
    corecore