4 research outputs found

    Immobilization of periodate oxidized invertase by adsorption on sepiolite

    No full text
    Periodate oxidized invertase was immobilized by adsorption on sepiolite. The obtained immobilized enzyme was more resistant to washing out by concentrated salt solution, and had an eight times higher half-life at 60ºC than adsorbed native invertase. In packed bed reactor 50 % conversion of 500 g/dm3 sucrose at 40ºC and a flow rate of 1 bv/h was achieved. The specific productivity of the immobilized invertase was 0.187 kg/dm3/h

    Stabilization of a-glucosidase in organic solvents by immobilization on macroporous poly(GMA-co-EGDMA) with different surface characteristics

    No full text
    a-Glucosidase from baker’s yeast was immobilized on macroporous copolymers of ethylene glycol dimethacrylate and glycidyl methacrylate, poly(GMA-co-EGDMA), with various surface characteristics and pore sizes ranging from 44 nmto 270 nm. Immobilization was done by glutaraldehyde on the copolymer previously modified with 1,2-diaminoethane. The specific activity of the obtained immobilized enzyme varied from 27 to 81 U/g, depending on the employed copolymer. The half lives of the immobilized enzyme in cosolvents were influenced by the surface characteristics of the copolymer, ranging from 60 to 150 min in 35 % methanol and from 10 to 44 min in 45 % dimethyl sulphoxide (DMSO). The best stabilities were obtained when the enzyme was immobilized onto a copolymer having a pore size of 48 nm in methanol and 270 nm in DMSO
    corecore