22 research outputs found
Selective Ligand Recognition by a Diversity-Generating Retroelement Variable Protein
Diversity-generating retroelements (DGRs) recognize novel ligands through massive protein sequence variation, a property shared uniquely with the adaptive immune response. Little is known about how recognition is achieved by DGR variable proteins. Here, we present the structure of the Bordetella bacteriophage DGR variable protein major tropism determinant (Mtd) bound to the receptor pertactin, revealing remarkable adaptability in the static binding sites of Mtd. Despite large dissimilarities in ligand binding mode, principles underlying selective recognition were strikingly conserved between Mtd and immunoreceptors. Central to this was the differential amplification of binding strengths by avidity (i.e., multivalency), which not only relaxed the demand for optimal complementarity between Mtd and pertactin but also enhanced distinctions among binding events to provide selectivity. A quantitatively similar balance between complementarity and avidity was observed for Bordetella bacteriophage DGR as occurs in the immune system, suggesting that variable repertoires operate under a narrow set of conditions to recognize novel ligands
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
PDlim2 Selectively Interacts with the PDZ Binding Motif of Highly Pathogenic Avian H5N1 Influenza A Virus NS1
The multi-functional NS1 protein of influenza A virus is a viral virulence
determining factor. The last four residues at the C-terminus of NS1 constitute a
type I PDZ domain binding motif (PBM). Avian influenza viruses currently in
circulation carry an NS1 PBM with consensus sequence ESEV, whereas human
influenza viruses bear an NS1 PBM with consensus sequence RSKV or RSEV. The PBM
sequence of the influenza A virus NS1 is reported to contribute to high viral
pathogenicity in animal studies. Here, we report the identification of PDlim2 as
a novel binding target of the highly pathogenic avian influenza virus H5N1
strain with an NS1 PBM of ESEV (A/Chicken/Henan/12/2004/H5N1, HN12-NS1) by yeast
two-hybrid screening. The interaction was confirmed by in vitro
GST pull-down assays, as well as by in vivo mammalian
two-hybrid assays and bimolecular fluorescence complementation assays. The
binding was also confirmed to be mediated by the interaction of the PDlim2 PDZ
domain with the NS1 PBM motif. Interestingly, our assays showed that PDlim2
bound specifically with HN12-NS1, but exhibited no binding to NS1 from a human
influenza H1N1 virus bearing an RSEV PBM (A/Puerto Rico/8/34/H1N1, PR8-NS1). A
crystal structure of the PDlim2 PDZ domain fused with the C-terminal hexapeptide
from HN12-NS1, together with GST pull-down assays on PDlim2 mutants, reveals
that residues Arg16 and Lys31 of PDlim2 are critical for the binding between
PDlim2 and HN12-NS1. The identification of a selective binding target of
HN12-NS1 (ESEV), but not PR8-NS1 (RSEV), enables us to propose a structural
mechanism for the interaction between NS1 PBM and PDlim2 or other PDZ-containing
proteins
Crystal structure of parallel quadruplexes from human telomeric DNA
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation(1). Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures(2-4), which may be involved in the structure of telomere ends(5). Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K+ concentration that approximates its intracellular concentration. K+ ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na+-containing quadruplex structures(2,4,6). All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins